These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 20731405)
21. Radiation pressure of active dispersive chiral slabs. Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666 [TBL] [Abstract][Full Text] [Related]
22. Stochastic analysis of the parity-violating energy differences between enantiomers and its implications for the origin of biological chirality. Lente G J Phys Chem A; 2006 Nov; 110(47):12711-3. PubMed ID: 17125283 [TBL] [Abstract][Full Text] [Related]
23. Förster resonant energy transfer in orthogonally arranged chromophores. Langhals H; Esterbauer AJ; Walter A; Riedle E; Pugliesi I J Am Chem Soc; 2010 Dec; 132(47):16777-82. PubMed ID: 21053962 [TBL] [Abstract][Full Text] [Related]
24. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling. Garbacz P; Buckingham AD J Chem Phys; 2016 Nov; 145(20):204201. PubMed ID: 27908137 [TBL] [Abstract][Full Text] [Related]
25. A giant chiroptical effect caused by the electric quadrupole. Wu T; Zhang W; Wang R; Zhang X Nanoscale; 2017 Apr; 9(16):5110-5118. PubMed ID: 28387409 [TBL] [Abstract][Full Text] [Related]
26. Measuring chirality in NMR in the presence of a time-dependent electric field. Walls JD; Harris RA J Chem Phys; 2014 Jun; 140(23):234201. PubMed ID: 24952533 [TBL] [Abstract][Full Text] [Related]
27. Application of classical models of chirality to optical rectification. Wang XO; Gong LJ; Li CF J Chem Phys; 2008 Aug; 129(7):074708. PubMed ID: 19044793 [TBL] [Abstract][Full Text] [Related]
28. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Patterson D; Schnell M; Doyle JM Nature; 2013 May; 497(7450):475-7. PubMed ID: 23698447 [TBL] [Abstract][Full Text] [Related]
29. Chirality-sensitive effects induced by nuclear relaxation in an electric field. Garbacz P J Chem Phys; 2016 Dec; 145(22):224202. PubMed ID: 27984889 [TBL] [Abstract][Full Text] [Related]
30. Theory of the optical spatial separation of racemic mixtures of chiral molecules. Li X; Shapiro M J Chem Phys; 2010 May; 132(19):194315. PubMed ID: 20499971 [TBL] [Abstract][Full Text] [Related]
31. Quantum calculation of the second-order hyperpolarizability of chiral molecules in the "one-electron" model. Hache F J Phys Chem A; 2010 Sep; 114(37):10277-86. PubMed ID: 20722438 [TBL] [Abstract][Full Text] [Related]
32. Chiral discrimination in nuclear magnetic resonance spectroscopy. Lazzeretti P J Phys Condens Matter; 2017 Nov; 29(44):443001. PubMed ID: 28786393 [TBL] [Abstract][Full Text] [Related]
33. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. Jang S; Newton MD; Silbey RJ J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170 [TBL] [Abstract][Full Text] [Related]
34. Chiral discrimination via nuclear magnetic shielding polarisabilities from NMR spectroscopy: theoretical study of (R(a))-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-N-methyloxaziridine. Zanasi R; Pelloni S; Lazzeretti P J Comput Chem; 2007 Oct; 28(13):2159-63. PubMed ID: 17450593 [TBL] [Abstract][Full Text] [Related]
35. Superpositions of chiral states in the presence of electric dipole, magnetic dipole, and electric quadrupole interactions. Athalye VS; Kumar A J Chem Phys; 2005 May; 122(17):174302. PubMed ID: 15910027 [TBL] [Abstract][Full Text] [Related]
37. On the theory of the proton free induction decay and Hahn echo in polymer systems: the role of intermolecular magnetic dipole-dipole interactions and the modified Anderson-Weiss approximation. Fatkullin N; Gubaidullin A; Mattea C; Stapf S J Chem Phys; 2012 Dec; 137(22):224907. PubMed ID: 23249032 [TBL] [Abstract][Full Text] [Related]
38. Communication: permanent dipoles contribute to electric polarization in chiral NMR spectra. Buckingham AD J Chem Phys; 2014 Jan; 140(1):011103. PubMed ID: 24410214 [TBL] [Abstract][Full Text] [Related]
39. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: equilateral triangle and collinear configurations. Salam A J Chem Phys; 2013 Dec; 139(24):244105. PubMed ID: 24387355 [TBL] [Abstract][Full Text] [Related]
40. Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method. Khoury CG; Norton SJ; Vo-Dinh T Nanotechnology; 2010 Aug; 21(31):315203. PubMed ID: 20634565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]