These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Effect of temperature on the capacitance of carbon nanotube supercapacitors. Masarapu C; Zeng HF; Hung KH; Wei B ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250 [TBL] [Abstract][Full Text] [Related]
8. Dioxythiophene-based polymer electrodes for supercapacitor modules. Liu DY; Reynolds JR ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685 [TBL] [Abstract][Full Text] [Related]
9. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863 [TBL] [Abstract][Full Text] [Related]
11. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Wang F; Zhan X; Cheng Z; Wang Z; Wang Q; Xu K; Safdar M; He J Small; 2015 Feb; 11(6):749-55. PubMed ID: 25273957 [TBL] [Abstract][Full Text] [Related]
12. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. Xu H; Zhang C; Zhou W; Li GR Nanoscale; 2015 Oct; 7(40):16932-42. PubMed ID: 26416358 [TBL] [Abstract][Full Text] [Related]
13. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534 [TBL] [Abstract][Full Text] [Related]
14. Tin nanoparticle thin film electrodes fabricated by the vacuum filtration method for enhanced battery performance. Lee JH; Kong BS; Baek YK; Yang SB; Jung HT Nanotechnology; 2009 Jun; 20(23):235203. PubMed ID: 19448286 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. Saran N; Parikh K; Suh DS; Muñoz E; Kolla H; Manohar SK J Am Chem Soc; 2004 Apr; 126(14):4462-3. PubMed ID: 15070332 [TBL] [Abstract][Full Text] [Related]
16. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. Xu J; Wang Q; Wang X; Xiang Q; Liang B; Chen D; Shen G ACS Nano; 2013 Jun; 7(6):5453-62. PubMed ID: 23647224 [TBL] [Abstract][Full Text] [Related]
17. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Jiang H; Li C; Sun T; Ma J Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343 [TBL] [Abstract][Full Text] [Related]
18. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Zhu J; Jiang J; Sun Z; Luo J; Fan Z; Huang X; Zhang H; Yu T Small; 2014 Jul; 10(14):2937-45. PubMed ID: 24643977 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. Li X; Rong J; Wei B ACS Nano; 2010 Oct; 4(10):6039-49. PubMed ID: 20828214 [TBL] [Abstract][Full Text] [Related]
20. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors. Harilal M; Vidyadharan B; Misnon II; Anilkumar GM; Lowe A; Ismail J; Yusoff MM; Jose R ACS Appl Mater Interfaces; 2017 Mar; 9(12):10730-10742. PubMed ID: 28266837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]