BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20731433)

  • 1. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.
    Sassin MB; Mansour AN; Pettigrew KA; Rolison DR; Long JW
    ACS Nano; 2010 Aug; 4(8):4505-14. PubMed ID: 20731433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity.
    Sassin MB; Hoag CP; Willis BT; Kucko NW; Rolison DR; Long JW
    Nanoscale; 2013 Feb; 5(4):1649-57. PubMed ID: 23334529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors.
    Fischer AE; Pettigrew KA; Rolison DR; Stroud RM; Long JW
    Nano Lett; 2007 Feb; 7(2):281-6. PubMed ID: 17297991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide.
    Zhao D; Guo X; Gao Y; Gao F
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5583-9. PubMed ID: 22988980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformal surface coatings to enable high volume expansion Li-ion anode materials.
    Riley LA; Cavanagh AS; George SM; Jung YS; Yan Y; Lee SH; Dillon AC
    Chemphyschem; 2010 Jul; 11(10):2124-30. PubMed ID: 20449864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors.
    Lee SW; Kim J; Chen S; Hammond PT; Shao-Horn Y
    ACS Nano; 2010 Jul; 4(7):3889-96. PubMed ID: 20552996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale conductivity mapping of hybrid nanoarchitectures: ultrathin poly(o-phenylenediamine) on mesoporous manganese oxide ambigels.
    McEvoy TM; Long JW; Smith TJ; Stevenson KJ
    Langmuir; 2006 May; 22(10):4462-6. PubMed ID: 16649748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials.
    Jo C; An S; Kim Y; Shim J; Yoon S; Lee J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5695-704. PubMed ID: 22434145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors.
    Chen YC; Lin YG; Hsu YK; Yen SC; Chen KH; Chen LC
    Small; 2014 Sep; 10(18):3803-10. PubMed ID: 24850774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.
    Lee JS; Shin DH; Jun J; Lee C; Jang J
    ChemSusChem; 2014 Jun; 7(6):1676-83. PubMed ID: 24706636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical study of the reactions between small neutral iron oxide clusters and carbon monoxide.
    Xue W; Wang ZC; He SG; Xie Y; Bernstein ER
    J Am Chem Soc; 2008 Nov; 130(47):15879-88. PubMed ID: 18975866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity.
    Deng MJ; Huang FL; Sun IW; Tsai WT; Chang JK
    Nanotechnology; 2009 Apr; 20(17):175602. PubMed ID: 19420595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties.
    Panić VV; Dekanski AB; Mitrić M; Milonjić SK; Misković-Stanković VB; Nikolić BZ
    Phys Chem Chem Phys; 2010 Jul; 12(27):7521-8. PubMed ID: 20544088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes.
    Wang D; Wang Q; Wang T
    Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy.
    Chang JK; Lee MT; Tsai WT; Deng MJ; Cheng HF; Sun IW
    Langmuir; 2009 Oct; 25(19):11955-60. PubMed ID: 19621902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors.
    Brezesinski T; Wang J; Polleux J; Dunn B; Tolbert SH
    J Am Chem Soc; 2009 Feb; 131(5):1802-9. PubMed ID: 19159234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.