These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20731516)

  • 21. The time of our lives: life span development of timing and event tracking.
    McAuley JD; Jones MR; Holub S; Johnston HM; Miller NS
    J Exp Psychol Gen; 2006 Aug; 135(3):348-67. PubMed ID: 16846269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timing of bimanual alternating finger-tapping sequences in adolescents with mental retardation: a pilot study.
    Inui N; Asama K
    Percept Mot Skills; 2003 Oct; 97(2):398-400. PubMed ID: 14620225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Timing is affected by demands in memory search but not by task switching.
    Fortin C; Schweickert R; Gaudreault R; Viau-Quesnel C
    J Exp Psychol Hum Percept Perform; 2010 Jun; 36(3):580-95. PubMed ID: 20515190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling.
    Torre K; Delignières D
    Acta Psychol (Amst); 2008 Oct; 129(2):284-96. PubMed ID: 18799152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of patients with Parkinson's disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing.
    Spencer RM; Ivry RB
    Brain Cogn; 2005 Jun; 58(1):84-93. PubMed ID: 15878729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing of rhythmic movements in patients with cerebellar degeneration.
    Schlerf JE; Spencer RM; Zelaznik HN; Ivry RB
    Cerebellum; 2007; 6(3):221-31. PubMed ID: 17786818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the timing basis of bimanual coordination in discrete and continuous tasks.
    Semjen A
    Brain Cogn; 2002 Feb; 48(1):133-48. PubMed ID: 11812038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of robotic guidance on different types of motor timing.
    Lüttgen J; Heuer H
    J Mot Behav; 2013; 45(3):249-58. PubMed ID: 23663189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson's disease.
    Jones CR; Malone TJ; Dirnberger G; Edwards M; Jahanshahi M
    Brain Cogn; 2008 Oct; 68(1):30-41. PubMed ID: 18378374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory dominance in the error correction process: a synchronized tapping study.
    Kato M; Konishi Y
    Brain Res; 2006 Apr; 1084(1):115-22. PubMed ID: 16556436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The differential effects of Sternberg short- and long-term memory scanning on the late Nd and P300 in a dual-task paradigm.
    Singhal A; Fowler B
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):124-32. PubMed ID: 15325420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of perceptual-motor continuity compatibility on the temporal control of continuous and discontinuous self-paced rhythmic movements.
    Braun Janzen T; Schaffert N; Schlüter S; Ploigt R; Thaut MH
    Hum Mov Sci; 2021 Apr; 76():102761. PubMed ID: 33485154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delayed auditory feedback in repetitive tapping: a role for the sensory goal.
    Drewing K
    Q J Exp Psychol (Hove); 2013; 66(1):51-68. PubMed ID: 22823478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motor and executive control in repetitive timing of brief intervals.
    Holm L; Ullén F; Madison G
    J Exp Psychol Hum Percept Perform; 2013 Apr; 39(2):365-80. PubMed ID: 22731995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cerebellum and event timing.
    Ivry RB; Spencer RM; Zelaznik HN; Diedrichsen J
    Ann N Y Acad Sci; 2002 Dec; 978():302-17. PubMed ID: 12582062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Working memory costs of task switching.
    Liefooghe B; Barrouillet P; Vandierendonck A; Camos V
    J Exp Psychol Learn Mem Cogn; 2008 May; 34(3):478-94. PubMed ID: 18444750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. We infer rather than perceive the moment we decided to act.
    Banks WP; Isham EA
    Psychol Sci; 2009 Jan; 20(1):17-21. PubMed ID: 19152537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of attentional prioritisation on the temporal and spatial components of an interlimb circle-drawing task.
    Hiraga CY; Summers JJ; Temprado JJ
    Hum Mov Sci; 2005; 24(5-6):815-32. PubMed ID: 16337296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.