These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 20731718)
1. Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. Crowley E; O'Mara ML; Kerr ID; Callaghan R FEBS J; 2010 Oct; 277(19):3974-85. PubMed ID: 20731718 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Crowley E; O'Mara ML; Reynolds C; Tieleman DP; Storm J; Kerr ID; Callaghan R Biochemistry; 2009 Jul; 48(26):6249-58. PubMed ID: 19456124 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884 [TBL] [Abstract][Full Text] [Related]
4. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Loo TW; Clarke DM Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3511-6. PubMed ID: 11891276 [TBL] [Abstract][Full Text] [Related]
5. ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2005 Aug; 44(30):10250-8. PubMed ID: 16042402 [TBL] [Abstract][Full Text] [Related]
6. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). Ravna AW; Sylte I; Sager G Theor Biol Med Model; 2007 Sep; 4():33. PubMed ID: 17803828 [TBL] [Abstract][Full Text] [Related]
7. The coupling mechanism of P-glycoprotein involves residue L339 in the sixth membrane spanning segment. Rothnie A; Storm J; McMahon R; Taylor A; Kerr ID; Callaghan R FEBS Lett; 2005 Jul; 579(18):3984-90. PubMed ID: 16004994 [TBL] [Abstract][Full Text] [Related]
8. Cytosolic region of TM6 in P-glycoprotein: topographical analysis and functional perturbation by site directed labeling. Storm J; Modok S; O'Mara ML; Tieleman DP; Kerr ID; Callaghan R Biochemistry; 2008 Mar; 47(12):3615-24. PubMed ID: 18303860 [TBL] [Abstract][Full Text] [Related]
9. Conformational and functional characterization of trapped complexes of the P-glycoprotein multidrug transporter. Russell PL; Sharom FJ Biochem J; 2006 Oct; 399(2):315-23. PubMed ID: 16803457 [TBL] [Abstract][Full Text] [Related]
10. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Liu R; Sharom FJ Biochemistry; 1996 Sep; 35(36):11865-73. PubMed ID: 8794769 [TBL] [Abstract][Full Text] [Related]
11. The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Sauna ZE; Peng XH; Nandigama K; Tekle S; Ambudkar SV Mol Pharmacol; 2004 Mar; 65(3):675-84. PubMed ID: 14978246 [TBL] [Abstract][Full Text] [Related]
12. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 2002 Nov; 277(46):44332-8. PubMed ID: 12223492 [TBL] [Abstract][Full Text] [Related]
13. Communication between the nucleotide binding domains of P-glycoprotein occurs via conformational changes that involve residue 508. Gabriel MP; Storm J; Rothnie A; Taylor AM; Linton KJ; Kerr ID; Callaghan R Biochemistry; 2003 Jul; 42(25):7780-9. PubMed ID: 12820887 [TBL] [Abstract][Full Text] [Related]
14. Modulator-induced interference in functional cross talk between the substrate and the ATP sites of human P-glycoprotein. Maki N; Moitra K; Silver C; Ghosh P; Chattopadhyay A; Dey S Biochemistry; 2006 Feb; 45(8):2739-51. PubMed ID: 16489767 [TBL] [Abstract][Full Text] [Related]
15. Residue G346 in transmembrane segment six is involved in inter-domain communication in P-glycoprotein. Storm J; O'Mara ML; Crowley EH; Peall J; Tieleman DP; Kerr ID; Callaghan R Biochemistry; 2007 Sep; 46(35):9899-910. PubMed ID: 17696319 [TBL] [Abstract][Full Text] [Related]
16. The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. van Wonderen JH; McMahon RM; O'Mara ML; McDevitt CA; Thomson AJ; Kerr ID; MacMillan F; Callaghan R FEBS J; 2014 May; 281(9):2190-2201. PubMed ID: 24597976 [TBL] [Abstract][Full Text] [Related]
17. Human P-glycoprotein is active when the two halves are clamped together in the closed conformation. Loo TW; Bartlett MC; Clarke DM Biochem Biophys Res Commun; 2010 May; 395(3):436-40. PubMed ID: 20394729 [TBL] [Abstract][Full Text] [Related]
18. Molecular insight into conformational transmission of human P-glycoprotein. Chang SY; Liu FF; Dong XY; Sun Y J Chem Phys; 2013 Dec; 139(22):225102. PubMed ID: 24329094 [TBL] [Abstract][Full Text] [Related]
19. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Ambudkar SV; Kim IW; Sauna ZE Eur J Pharm Sci; 2006 Apr; 27(5):392-400. PubMed ID: 16352426 [TBL] [Abstract][Full Text] [Related]
20. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Loo TW; Bartlett MC; Clarke DM Biochem J; 2006 Oct; 399(2):351-9. PubMed ID: 16813563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]