BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20731789)

  • 1. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.
    Matsuo K; Matsumura T
    Plant Biotechnol J; 2011 Feb; 9(2):264-81. PubMed ID: 20731789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.
    Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T
    J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of recombinant human granulocyte macrophage-colony stimulating factor in rice cell suspension culture with a human-like N-glycan structure.
    Shin YJ; Chong YJ; Yang MS; Kwon TH
    Plant Biotechnol J; 2011 Dec; 9(9):1109-19. PubMed ID: 21801300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation.
    Frey AD; Karg SR; Kallio PT
    Plant Biotechnol J; 2009 Jan; 7(1):33-48. PubMed ID: 18778316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics.
    Kanda Y; Imai-Nishiya H; Kuni-Kamochi R; Mori K; Inoue M; Kitajima-Miyama K; Okazaki A; Iida S; Shitara K; Satoh M
    J Biotechnol; 2007 Jun; 130(3):300-10. PubMed ID: 17559959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.
    Li J; Stoddard TJ; Demorest ZL; Lavoie PO; Luo S; Clasen BM; Cedrone F; Ray EE; Coffman AP; Daulhac A; Yabandith A; Retterath AJ; Mathis L; Voytas DF; D'Aoust MA; Zhang F
    Plant Biotechnol J; 2016 Feb; 14(2):533-42. PubMed ID: 26011187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyco-engineering of moss lacking plant-specific sugar residues.
    Huether CM; Lienhart O; Baur A; Stemmer C; Gorr G; Reski R; Decker EL
    Plant Biol (Stuttg); 2005 May; 7(3):292-9. PubMed ID: 15912449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells.
    Ohyama C; Smith PL; Angata K; Fukuda MN; Lowe JB; Fukuda M
    J Biol Chem; 1998 Jun; 273(23):14582-7. PubMed ID: 9603974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.
    Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H
    Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose snthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori.
    Wu B; Zhang Y; Wang PG
    Biochem Biophys Res Commun; 2001 Jul; 285(2):364-71. PubMed ID: 11444851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants.
    Chen M; Liu X; Wang Z; Song J; Qi Q; Wang PG
    Med Res Rev; 2005 May; 25(3):343-60. PubMed ID: 15499575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human beta(1,4)-galactosyltransferase.
    Fujiyama K; Furukawa A; Katsura A; Misaki R; Omasa T; Seki T
    Biochem Biophys Res Commun; 2007 Jun; 358(1):85-91. PubMed ID: 17481579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants.
    Limkul J; Iizuka S; Sato Y; Misaki R; Ohashi T; Ohashi T; Fujiyama K
    Plant Biotechnol J; 2016 Aug; 14(8):1682-94. PubMed ID: 26868756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster.
    Rhomberg S; Fuchsluger C; Rendić D; Paschinger K; Jantsch V; Kosma P; Wilson IB
    FEBS J; 2006 May; 273(10):2244-56. PubMed ID: 16650000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants.
    Ding L; Hofius D; Hajirezaei MR; Fernie AR; Börnke F; Sonnewald U
    J Exp Bot; 2007; 58(8):2053-67. PubMed ID: 17463052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression.
    Karg SR; Frey AD; Kallio PT
    J Biotechnol; 2010 Mar; 146(1-2):54-65. PubMed ID: 20083147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana.
    Todd AT; Liu E; Polvi SL; Pammett RT; Page JE
    Plant J; 2010 May; 62(4):589-600. PubMed ID: 20202168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern.
    Schähs M; Strasser R; Stadlmann J; Kunert R; Rademacher T; Steinkellner H
    Plant Biotechnol J; 2007 Sep; 5(5):657-63. PubMed ID: 17678502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose.
    Nakayama K; Maeda Y; Jigami Y
    Glycobiology; 2003 Oct; 13(10):673-80. PubMed ID: 12881408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.