These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 20731834)
1. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. Dosen S; Cipriani C; Kostić M; Controzzi M; Carrozza MC; Popović DB J Neuroeng Rehabil; 2010 Aug; 7():42. PubMed ID: 20731834 [TBL] [Abstract][Full Text] [Related]
2. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor. Zhang T; Jiang L; Liu H IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148 [TBL] [Abstract][Full Text] [Related]
3. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. Markovic M; Dosen S; Cipriani C; Popovic D; Farina D J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493 [TBL] [Abstract][Full Text] [Related]
4. The SmartHand transradial prosthesis. Cipriani C; Controzzi M; Carrozza MC J Neuroeng Rehabil; 2011 May; 8():29. PubMed ID: 21600048 [TBL] [Abstract][Full Text] [Related]
5. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects. Kent BA; Karnati N; Engeberg ED J Neuroeng Rehabil; 2014 Mar; 11():41. PubMed ID: 24655413 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based artificial vision for grasp classification in myoelectric hands. Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317 [TBL] [Abstract][Full Text] [Related]
7. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. Markovic M; Dosen S; Popovic D; Graimann B; Farina D J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274 [TBL] [Abstract][Full Text] [Related]
8. Transradial prosthesis: artificial vision for control of prehension. Došen S; Popović DB Artif Organs; 2011 Jan; 35(1):37-48. PubMed ID: 20618232 [TBL] [Abstract][Full Text] [Related]
9. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Matrone GC; Cipriani C; Carrozza MC; Magenes G J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711 [TBL] [Abstract][Full Text] [Related]
10. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands. Sharma U; Vasamsetti S; Chander SA; Datta B Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026 [TBL] [Abstract][Full Text] [Related]
11. Bio-inspired controller for a dexterous prosthetic hand based on Principal Components Analysis. Matrone G; Cipriani C; Secco EL; Carrozza MC; Magenes G Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5022-5. PubMed ID: 19964659 [TBL] [Abstract][Full Text] [Related]
12. Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study. Lee C; Vaskov AK; Gonzalez MA; Vu PP; Davis AJ; Cederna PS; Chestek CA; Gates DH J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317254 [No Abstract] [Full Text] [Related]
13. Computer Vision-Based Grasp Pattern Recognition With Application to Myoelectric Control of Dexterous Hand Prosthesis. Shi C; Yang D; Zhao J; Liu H IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2090-2099. PubMed ID: 32746315 [TBL] [Abstract][Full Text] [Related]
14. i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals. Shi C; Zhao J; Yang D; Jiang L Int J Med Robot; 2024 Feb; 20(1):e2617. PubMed ID: 38536731 [TBL] [Abstract][Full Text] [Related]
15. Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand. Controzzi M; Cipriani C; Jehenne B; Donati M; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():499-502. PubMed ID: 21096539 [TBL] [Abstract][Full Text] [Related]
16. Structure design for a Two-DoF myoelectric prosthetic hand to realize basic hand functions in ADLs. Hoshigawa S; Jiang Y; Kato R; Morishita S; Nakamura T; Yabuki Y; Yokoi H Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4781-4. PubMed ID: 26737363 [TBL] [Abstract][Full Text] [Related]
17. Development of a prototype over-actuated biomimetic prosthetic hand. Williams MR; Walter W PLoS One; 2015; 10(3):e0118817. PubMed ID: 25790306 [TBL] [Abstract][Full Text] [Related]
18. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results. Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the effect of non-invasive force feedback on prosthetic grasp force modulation in participants with and without limb loss. Barontini F; Van Straaten M; Catalano MG; Thoreson A; Lopez C; Lennon R; Bianchi M; Andrews K; Santello M; Bicchi A; Zhao K PLoS One; 2023; 18(5):e0285081. PubMed ID: 37141211 [TBL] [Abstract][Full Text] [Related]