BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 20731867)

  • 1. A dynamic noise level algorithm for spectral screening of peptide MS/MS spectra.
    Xu H; Freitas MA
    BMC Bioinformatics; 2010 Aug; 11():436. PubMed ID: 20731867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical MS2/MS3 database search algorithm for automated analysis of phosphopeptide tandem mass spectra.
    Xu H; Wang L; Sallans L; Freitas MA
    Proteomics; 2009 Apr; 9(7):1763-70. PubMed ID: 19288523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.
    Madsen JA; Xu H; Robinson MR; Horton AP; Shaw JB; Giles DK; Kaoud TS; Dalby KN; Trent MS; Brodbelt JS
    Mol Cell Proteomics; 2013 Sep; 12(9):2604-14. PubMed ID: 23695934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data.
    Xu H; Freitas MA
    Proteomics; 2009 Mar; 9(6):1548-55. PubMed ID: 19235167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching.
    Deng Y; Ren Z; Pan Q; Qi D; Wen B; Ren Y; Yang H; Wu L; Chen F; Liu S
    J Proteome Res; 2019 Sep; 18(9):3235-3244. PubMed ID: 31364357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte carlo simulation-based algorithms for analysis of shotgun proteomic data.
    Xu H; Freitas MA
    J Proteome Res; 2008 Jul; 7(7):2605-15. PubMed ID: 18543962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced peptide quantification using spectral count clustering and cluster abundance.
    Lee S; Kwon MS; Lee HJ; Paik YK; Tang H; Lee JK; Park T
    BMC Bioinformatics; 2011 Oct; 12():423. PubMed ID: 22034872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. msCRUSH: Fast Tandem Mass Spectral Clustering Using Locality Sensitive Hashing.
    Wang L; Li S; Tang H
    J Proteome Res; 2019 Jan; 18(1):147-158. PubMed ID: 30511858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time.
    Xu H; Yang L; Freitas MA
    BMC Bioinformatics; 2008 Aug; 9():347. PubMed ID: 18713471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mascot-derived false positive peptide identifications revealed by manual analysis of tandem mass spectra.
    Chen Y; Zhang J; Xing G; Zhao Y
    J Proteome Res; 2009 Jun; 8(6):3141-7. PubMed ID: 19368407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The generating function approach for Peptide identification in spectral networks.
    Guthals A; Boucher C; Bandeira N
    J Comput Biol; 2015 May; 22(5):353-66. PubMed ID: 25423621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach.
    Shao W; Lam H
    J Proteome Res; 2013 Jul; 12(7):3223-32. PubMed ID: 23675732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mass accuracy sensitive probability based scoring algorithm for database searching of tandem mass spectrometry data.
    Xu H; Freitas MA
    BMC Bioinformatics; 2007 Apr; 8():133. PubMed ID: 17448237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing an alternative search algorithm for compound identification with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID'.
    Oberacher H; Whitley G; Berger B; Weinmann W
    J Mass Spectrom; 2013 Apr; 48(4):497-504. PubMed ID: 23584943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
    Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator.
    Wright JC; Collins MO; Yu L; Käll L; Brosch M; Choudhary JS
    Mol Cell Proteomics; 2012 Aug; 11(8):478-91. PubMed ID: 22493177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID).
    Kelstrup CD; Frese C; Heck AJ; Olsen JV; Nielsen ML
    Mol Cell Proteomics; 2014 Aug; 13(8):1914-24. PubMed ID: 24895383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.