These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20732296)

  • 1. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism.
    Keijer J; Bekkenkamp-Grovenstein M; Venema D; Dommels YE
    Biochim Biophys Acta; 2011 Jun; 1807(6):697-706. PubMed ID: 20732296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolic metabolism during cancer EMT.
    Cha YH; Yook JI; Kim HS; Kim NH
    Arch Pharm Res; 2015 Mar; 38(3):313-20. PubMed ID: 25634102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative metabolism in cancer growth.
    Ristow M
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):339-45. PubMed ID: 16778561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mevalonate metabolism in cancer.
    Gruenbacher G; Thurnher M
    Cancer Lett; 2015 Jan; 356(2 Pt A):192-6. PubMed ID: 24467965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism in tumor cells.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E
    FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria: The ketogenic diet--A metabolism-based therapy.
    Vidali S; Aminzadeh S; Lambert B; Rutherford T; Sperl W; Kofler B; Feichtinger RG
    Int J Biochem Cell Biol; 2015 Jun; 63():55-9. PubMed ID: 25666556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic adaptation to cancer growth: from the cell to the organism.
    Escoté X; Fajas L
    Cancer Lett; 2015 Jan; 356(2 Pt A):171-5. PubMed ID: 24709629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    Jose C; Bellance N; Rossignol R
    Biochim Biophys Acta; 2011 Jun; 1807(6):552-61. PubMed ID: 20955683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulatory roles of glycolytic enzymes in cell death.
    Cerella C; Dicato M; Diederich M
    Biochem Pharmacol; 2014 Nov; 92(1):22-30. PubMed ID: 25034412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprogrammed metabolism of cancer cells as a potential therapeutic target.
    Keijer J; van Dartel DA
    Curr Pharm Des; 2014; 20(15):2580-94. PubMed ID: 23859616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial carrier SLC25A10 regulates cancer cell growth.
    Zhou X; Paredes JA; Krishnan S; Curbo S; Karlsson A
    Oncotarget; 2015 Apr; 6(11):9271-83. PubMed ID: 25797253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
    Lunt SY; Vander Heiden MG
    Annu Rev Cell Dev Biol; 2011; 27():441-64. PubMed ID: 21985671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose avidity of carcinomas.
    Ortega AD; Sánchez-Aragó M; Giner-Sánchez D; Sánchez-Cenizo L; Willers I; Cuezva JM
    Cancer Lett; 2009 Apr; 276(2):125-35. PubMed ID: 18790562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect.
    Weljie AM; Jirik FR
    Int J Biochem Cell Biol; 2011 Jul; 43(7):981-9. PubMed ID: 20797448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression.
    Diaz-Ruiz R; Rigoulet M; Devin A
    Biochim Biophys Acta; 2011 Jun; 1807(6):568-76. PubMed ID: 20804724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Evidence of the Link Between Energetic Metabolism and Proliferation Capacity of Cancer Cells In Vitro.
    De Preter G; Danhier P; Porporato PE; Payen VL; Jordan BF; Sonveaux P; Gallez B
    Adv Exp Med Biol; 2016; 876():209-214. PubMed ID: 26782214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
    Barger JF; Plas DR
    Endocr Relat Cancer; 2010 Dec; 17(4):R287-304. PubMed ID: 20699334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.