BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20732733)

  • 1. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments.
    Cournane S; León Vintró L; Mitchell PI
    J Environ Radioact; 2010 Nov; 101(11):985-91. PubMed ID: 20732733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A process-based model for the partitioning of soluble, suspended particulate and bed sediment fractions of plutonium and caesium in the eastern Irish Sea.
    Vives I Batlle J; Bryan S; McDonald P
    J Environ Radioact; 2008 Jan; 99(1):62-80. PubMed ID: 17719705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea.
    Garcia-Orellana J; Pates JM; Masqué P; Bruach JM; Sanchez-Cabeza JA
    Sci Total Environ; 2009 Jan; 407(2):887-98. PubMed ID: 18986686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manmade and natural radionuclides in north east Atlantic shelf and slope sediments: Implications for rates of sedimentary processes and for contaminant dispersion.
    MacKenzie AB; Stewart A; Cook GT; Mitchell L; Ellet DJ; Griffiths CR
    Sci Total Environ; 2006 Oct; 369(1-3):256-72. PubMed ID: 16757016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An estimate of the inventory of technetium-99 in the sub-tidal sediments of the Irish Sea.
    Jenkinson SB; McCubbin D; Kennedy PH; Dewar A; Bonfield R; Leonard KS
    J Environ Radioact; 2014 Jul; 133():40-7. PubMed ID: 23759825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial radionuclides in the Irish Sea from Sellafield: remobilisation revisited.
    Hunt J; Leonard K; Hughes L
    J Radiol Prot; 2013 Jun; 33(2):261-79. PubMed ID: 23482389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthropogenic radionuclides in sediment in the Japan Sea: distribution and transport processes of particulate radionuclides.
    Otosaka S; Amano H; Ito T; Kawamura H; Kobayashi T; Suzuki T; Togawa O; Chaykovskaya EL; Lishavskaya TS; Novichkov VP; Karasev EV; Tkalin AV; Volkov YN
    J Environ Radioact; 2006; 91(3):128-45. PubMed ID: 17049416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary.
    Håkanson L; Lindgren D
    Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment reworking rates in deep sediments of the Mediterranean Sea.
    Barsanti M; Delbono I; Schirone A; Langone L; Miserocchi S; Salvi S; Delfanti R
    Sci Total Environ; 2011 Jul; 409(15):2959-70. PubMed ID: 21561644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling 137Cs migration processes in lake sediments.
    Putyrskaya V; Klemt E
    J Environ Radioact; 2007; 96(1-3):54-62. PubMed ID: 17418919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEAD (part II)-Predictions of radioactivity concentrations in the Irish Sea.
    Smith CN; Goshawk JA; Charles K; McDonald P; Leonard KS; McCubbin D
    J Environ Radioact; 2003; 68(3):193-214. PubMed ID: 12782473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity.
    Pischedda L; Poggiale JC; Cuny P; Gilbert F
    Acta Biotheor; 2008 Jun; 56(1-2):123-35. PubMed ID: 18247133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment.
    Semizhon T; Röllin S; Spasova Y; Klemt E
    J Environ Radioact; 2010 May; 101(5):385-402. PubMed ID: 20346553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of gravel size fraction on the distribution coefficients of selected radionuclides.
    Um W; Serne RJ; Last GV; Clayton RE; Glossbrenner ET
    J Contam Hydrol; 2009 Jun; 107(1-2):82-90. PubMed ID: 19442406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean.
    Periáñez R
    J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution and transport of Sellafield derived 137 Cs and 241 Am to western Irish Sea sediments.
    Charlesworth ME; Service M; Gibson CE
    Sci Total Environ; 2006 Jan; 354(1):83-92. PubMed ID: 16376698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remobilization of polychlorinated biphenyl from Baltic Sea sediment: comparing the roles of bioturbation and physical resuspension.
    Hedman JE; Tocca JS; Gunnarsson JS
    Environ Toxicol Chem; 2009 Nov; 28(11):2241-9. PubMed ID: 19499969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 14C and delta13C characteristics of organic matter and carbonate in saltmarsh sediments from south west Scotland.
    MacKenzie AB; Cook GT; Barth J; Gulliver P; McDonald P
    J Environ Monit; 2004 May; 6(5):441-7. PubMed ID: 15152313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.