These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20732790)

  • 1. Self discovery enables robot social cognition: are you my teacher?
    Kaipa KN; Bongard JC; Meltzoff AN
    Neural Netw; 2010; 23(8-9):1113-24. PubMed ID: 20732790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from and about others: towards using imitation to bootstrap the social understanding of others by robots.
    Breazeal C; Buchsbaum D; Gray J; Gatenby D; Blumberg B
    Artif Life; 2005; 11(1-2):31-62. PubMed ID: 15811219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence and development of embodied cognition: a constructivist approach using robots.
    Kuniyoshi Y; Yorozu Y; Suzuki S; Sangawa S; Ohmura Y; Terada K; Nagakubo A
    Prog Brain Res; 2007; 164():425-45. PubMed ID: 17920445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embodied cognition for autonomous interactive robots.
    Hoffman G
    Top Cogn Sci; 2012 Oct; 4(4):759-72. PubMed ID: 22893571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From self-observation to imitation: visuomotor association on a robotic hand.
    Chaminade T; Oztop E; Cheng G; Kawato M
    Brain Res Bull; 2008 Apr; 75(6):775-84. PubMed ID: 18394524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural learning classifier system with self-adaptive constructivism for mobile robot control.
    Hurst J; Bull L
    Artif Life; 2006; 12(3):353-80. PubMed ID: 16859445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.
    Fung WK; Liu YH
    Neural Netw; 2003 Dec; 16(10):1403-20. PubMed ID: 14622873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The utility of evolving simulated robot morphology increases with task complexity for object manipulation.
    Bongard J
    Artif Life; 2010; 16(3):201-23. PubMed ID: 20059328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of structured interactions: from a theoretical model to pragmatic robotics.
    Revel A; Andry P
    Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic model of overt visual attention for cognitive robots.
    Begum M; Karray F; Mann GK; Gosine RG
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1305-18. PubMed ID: 20089477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body schema learning for robotic manipulators from visual self-perception.
    Sturm J; Plagemann C; Burgard W
    J Physiol Paris; 2009; 103(3-5):220-31. PubMed ID: 19665561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.