These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20732889)

  • 1. Growth of nanocrystals and thin films at the water-oil interface.
    Stansfield GL; Vanitha PV; Johnston HM; Fan D; AlQahtani H; Hague L; Grell M; Thomas PJ
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4313-30. PubMed ID: 20732889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials.
    Rao CN; Kalyanikutty KP
    Acc Chem Res; 2008 Apr; 41(4):489-99. PubMed ID: 18333620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of Ag and Ag-Au nanocrystalline films with tunable conductivity at the water-toluene interface.
    Stansfield GL; Johnston HM; Baxter SN; Thomas PJ
    RSC Adv; 2018 Feb; 8(12):6225-6230. PubMed ID: 35540424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystalline films of Au-Ag, Au-Cu, and Au-Ag-Cu alloys formed at the organic-aqueous interface.
    Agrawal VV; Mahalakshmi P; Kulkarni GU; Rao CN
    Langmuir; 2006 Feb; 22(4):1846-51. PubMed ID: 16460116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of nanocrystalline thin films of cadmium sulphide deposited at the water-oil interface.
    Albrasi E; Kelly AJ; Johal S; O'Brien P; Baxter SN; Thomas PJ
    J Colloid Interface Sci; 2017 Jun; 496():474-478. PubMed ID: 28257966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid fabrication of large-area nanoparticle monolayer films via water-induced interfacial assembly.
    Liu C; Li YJ; Wang MH; He Y; Yeung ES
    Nanotechnology; 2009 Feb; 20(6):065604. PubMed ID: 19417392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.
    Li JJ; Wang YA; Guo W; Keay JC; Mishima TD; Johnson MB; Peng X
    J Am Chem Soc; 2003 Oct; 125(41):12567-75. PubMed ID: 14531702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent effects on charge transport in films of Au nanocrystals.
    Stansfield GL; Thomas PJ
    J Am Chem Soc; 2012 Jul; 134(29):11888-91. PubMed ID: 22746531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free chemical route to ultrathin single-crystalline films of CuS and CuO employing the liquid-liquid interface.
    Gautam UK; Ghosh M; Rao CN
    Langmuir; 2004 Dec; 20(25):10775-8. PubMed ID: 15568823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of large-pore mesoporous nanocrystalline TiO2 thin films with tailored pore diameters.
    Liu K; Fu H; Shi K; Xiao F; Jing L; Xin B
    J Phys Chem B; 2005 Oct; 109(40):18719-22. PubMed ID: 16853408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired deposition of TiO2 thin films induced by hydrophobins.
    Santhiya D; Burghard Z; Greiner C; Jeurgens LP; Subkowski T; Bill J
    Langmuir; 2010 May; 26(9):6494-502. PubMed ID: 20121159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general synthesis of high-quality inorganic nanocrystals via a two-phase method.
    Zhao N; Nie W; Mao J; Yang M; Wang D; Lin Y; Fan Y; Zhao Z; Wei H; Ji X
    Small; 2010 Nov; 6(22):2558-65. PubMed ID: 20963794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties of nanocrystalline PbS films deposited at the water-oil interface: a study of atmospheric aging.
    Cant DJ; Syres KL; Lunt PJ; Radtke H; Treacy J; Thomas PJ; Lewis EA; Haigh SJ; O'Brien P; Schulte K; Bondino F; Magnano E; Flavell WR
    Langmuir; 2015 Feb; 31(4):1445-53. PubMed ID: 25557338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions.
    Jana D; Dandapat A; De G
    Langmuir; 2010 Jul; 26(14):12177-84. PubMed ID: 20557082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable growth of well-defined regular multiporphyrin array nanocrystals at the water-chloroform interface.
    Liu B; Qian DJ; Huang HX; Wakayama T; Hara S; Huang W; Nakamura C; Miyake J
    Langmuir; 2005 May; 21(11):5079-84. PubMed ID: 15896054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface.
    Lee KY; Kim M; Hahn J; Suh JS; Lee I; Kim K; Han SW
    Langmuir; 2006 Feb; 22(4):1817-21. PubMed ID: 16460112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.
    AbouZeid KM; Mohamed MB; El-Shall MS
    Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids.
    Kumar A; Chaudhary V
    Nanotechnology; 2009 Mar; 20(9):095703. PubMed ID: 19417499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.