These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 20732893)
1. Core-shell La(1-x)Sr(x)MnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Pollert E; Kaman O; Veverka P; Veverka M; Marysko M; Záveta K; Kacenka M; Lukes I; Jendelová P; Kaspar P; Burian M; Herynek V Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4389-405. PubMed ID: 20732893 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and magnetic characterizations of La(1-x)Sr(x)MnO3 nanoparticles for biomedical applications. Zhang K; Holloway T; Pradhan J; Bahoura M; Bah R; Rakhimov RR; Pradhan AK; Prabakaran R; Ramesh GT J Nanosci Nanotechnol; 2010 Sep; 10(9):5520-6. PubMed ID: 21133070 [TBL] [Abstract][Full Text] [Related]
3. Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia. Solopan S; Belous A; Yelenich A; Bubnovskaya L; Kovelskaya A; Podoltsev A; Kondratenko I; Osinsky S Exp Oncol; 2011 Sep; 33(3):130-5. PubMed ID: 21956464 [TBL] [Abstract][Full Text] [Related]
4. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Kaman O; Pollert E; Veverka P; Veverka M; Hadová E; Knízek K; Marysko M; Kaspar P; Klementová M; Grünwaldová V; Vasseur S; Epherre R; Mornet S; Goglio G; Duguet E Nanotechnology; 2009 Jul; 20(27):275610. PubMed ID: 19531865 [TBL] [Abstract][Full Text] [Related]
5. Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application. Thorat ND; Otari SV; Patil RM; Khot VM; Prasad AI; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Nov; 111():264-9. PubMed ID: 23838191 [TBL] [Abstract][Full Text] [Related]
6. Low-field magnetoresistance effect in core-shell structured La(0.7) Sr(0.3) CoO(3) nanoparticles. Wang Y; Fan HJ Small; 2012 Apr; 8(7):1060-5. PubMed ID: 22331674 [TBL] [Abstract][Full Text] [Related]
7. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
8. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586 [TBL] [Abstract][Full Text] [Related]
9. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell. Kačenka M; Kaman O; Kikerlová S; Pavlů B; Jirák Z; Jirák D; Herynek V; Černý J; Chaput F; Laurent S; Lukeš I J Colloid Interface Sci; 2015 Jun; 447():97-106. PubMed ID: 25702866 [TBL] [Abstract][Full Text] [Related]
10. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
11. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles. Bubnovskaya L; Belous A; Solopan A; Podoltsev A; Kondratenko I; Kovelskaya A; Sergienko T; Osinsky S Exp Oncol; 2012 Dec; 34(4):336-9. PubMed ID: 23302992 [TBL] [Abstract][Full Text] [Related]
12. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization. Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239 [TBL] [Abstract][Full Text] [Related]