These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Thorat ND; Shinde KP; Pawar SH; Barick KC; Betty CA; Ningthoujam RS Dalton Trans; 2012 Mar; 41(10):3060-71. PubMed ID: 22277953 [TBL] [Abstract][Full Text] [Related]
23. Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Thorat ND; Otari SV; Patil RM; Bohara RA; Yadav HM; Koli VB; Chaurasia AK; Ningthoujam RS Dalton Trans; 2014 Dec; 43(46):17343-51. PubMed ID: 25321385 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of highly magnetic graphite-encapsulated FeCo nanoparticles using a hydrothermal process. Lee SJ; Cho JH; Lee C; Cho J; Kim YR; Park JK Nanotechnology; 2011 Sep; 22(37):375603. PubMed ID: 21852740 [TBL] [Abstract][Full Text] [Related]
25. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles. Matsumoto H; Nagao D; Konno M Langmuir; 2010 Mar; 26(6):4207-11. PubMed ID: 19824685 [TBL] [Abstract][Full Text] [Related]
26. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555 [TBL] [Abstract][Full Text] [Related]
27. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Urries I; Muñoz C; Gomez L; Marquina C; Sebastian V; Arruebo M; Santamaria J Nanoscale; 2014 Aug; 6(15):9230-40. PubMed ID: 24980122 [TBL] [Abstract][Full Text] [Related]
28. Synthesis and magnetic properties of FePt nanoparticles with hard nonmagnetic shells. Kang S; Shi S; Miao GX; Jia Z; Nikles DE; Harrell JW J Nanosci Nanotechnol; 2007 Jan; 7(1):350-5. PubMed ID: 17455503 [TBL] [Abstract][Full Text] [Related]
29. TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. Prasad NK; Rathinasamy K; Panda D; Bahadur D J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):409-16. PubMed ID: 17922528 [TBL] [Abstract][Full Text] [Related]
30. Design and construction of a hyperthermia system with improved interaction of magnetic induction-heating. Huang CF; Lin XZ; Lo WH Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3229-32. PubMed ID: 21096603 [TBL] [Abstract][Full Text] [Related]
31. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Jafari T; Simchi A; Khakpash N J Colloid Interface Sci; 2010 May; 345(1):64-71. PubMed ID: 20153479 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol-gel process triggered by transition-metal salt in inverse systems. Cao Z; Yang L; Yan Y; Shang Y; Ye Q; Qi D; Ziener U; Shan G; Landfester K J Colloid Interface Sci; 2013 Sep; 406():139-47. PubMed ID: 23810544 [TBL] [Abstract][Full Text] [Related]
34. Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response. Bhayani KR; Rajwade JM; Paknikar KM Nanotechnology; 2013 Jan; 24(1):015102. PubMed ID: 23221040 [TBL] [Abstract][Full Text] [Related]
35. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications. Sabale S; Jadhav V; Khot V; Zhu X; Xin M; Chen H J Mater Sci Mater Med; 2015 Mar; 26(3):127. PubMed ID: 25690622 [TBL] [Abstract][Full Text] [Related]
36. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Li L; He X; Chen L; Zhang Y Chem Asian J; 2009 Feb; 4(2):286-93. PubMed ID: 19040251 [TBL] [Abstract][Full Text] [Related]
37. New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Natividad E; Castro M; Goglio G; Andreu I; Epherre R; Duguet E; Mediano A Nanoscale; 2012 Jul; 4(13):3954-62. PubMed ID: 22653748 [TBL] [Abstract][Full Text] [Related]
38. Citric-acid-coated magnetite nanoparticles for biological applications. Răcuciu M; Creangă DE; Airinei A Eur Phys J E Soft Matter; 2006 Oct; 21(2):117-21. PubMed ID: 17180642 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior. Kumar A; Singhal A Nanotechnology; 2009 Jul; 20(29):295606. PubMed ID: 19567956 [TBL] [Abstract][Full Text] [Related]