These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20732895)

  • 1. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation.
    Williams PS; Carpino F; Zborowski M
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4419-37. PubMed ID: 20732895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanoparticle drug carriers and their study by quadrupole magnetic field-flow fractionation.
    Williams PS; Carpino F; Zborowski M
    Mol Pharm; 2009; 6(5):1290-306. PubMed ID: 19591456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative determination of magnetic nanoparticle separation using on-off field operation of quadrupole magnetic field-flow fractionation (QMgFFF).
    Orita T; Moore LR; Joshi P; Tomita M; Horiuchi T; Zborowski M
    Anal Sci; 2013; 29(7):761-4. PubMed ID: 23842422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.
    Moore LR; Williams PS; Nehl F; Abe K; Chalmers JJ; Zborowski M
    Anal Bioanal Chem; 2014 Feb; 406(6):1661-70. PubMed ID: 24141316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow field-flow fractionation: a versatile approach for size characterization of alpha-tocopherol-induced enlargement of gold nanoparticles.
    Sermsri W; Jarujamrus P; Shiowatana J; Siripinyanond A
    Anal Bioanal Chem; 2010 Apr; 396(8):3079-85. PubMed ID: 20174983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles.
    Bendixen N; Losert S; Adlhart C; Lattuada M; Ulrich A
    J Chromatogr A; 2014 Mar; 1334():92-100. PubMed ID: 24556173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric flow field-flow fractionation in the field of nanomedicine.
    Wagner M; Holzschuh S; Traeger A; Fahr A; Schubert US
    Anal Chem; 2014 Jun; 86(11):5201-10. PubMed ID: 24802650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size characterization of drug-loaded polymeric core/shell nanoparticles using asymmetrical flow field-flow fractionation.
    Kang DY; Kim MJ; Kim ST; Oh KS; Yuk SH; Lee S
    Anal Bioanal Chem; 2008 Apr; 390(8):2183-8. PubMed ID: 18351326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.
    Hansen M; Smith MC; Crist RM; Clogston JD; McNeil SE
    Anal Bioanal Chem; 2015 Nov; 407(29):8661-72. PubMed ID: 26449845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4).
    Jang MH; Lee S; Hwang YS
    PLoS One; 2015; 10(11):e0143149. PubMed ID: 26575993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a microscale thermal-electrical field-flow fractionation system.
    Sant HJ; Gale BK
    J Chromatogr A; 2012 Feb; 1225():174-81. PubMed ID: 22226556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
    Zattoni A; Roda B; Borghi F; Marassi V; Reschiglian P
    J Pharm Biomed Anal; 2014 Jan; 87():53-61. PubMed ID: 24012480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical study of natural fractionated biocolloid by asymmetric flow field-flow fractionation in tandem with various complementary techniques using biologically synthesized silver nanocomposites.
    Railean-Plugaru V; Pomastowski P; Kowalkowski T; Sprynskyy M; Buszewski B
    Anal Bioanal Chem; 2018 Apr; 410(11):2837-2847. PubMed ID: 29616293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.
    Kim ST; Lee YJ; Hwang YS; Lee S
    Talanta; 2015 Jan; 132():939-44. PubMed ID: 25476400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.
    Contado C; Argazzi R
    J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical Flow Field-Flow Fractionation for Sizing of Gold Nanoparticles in Suspension.
    Drexel R; Sogne V; Dinkel M; Meier F; Klein T
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 32986039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.