These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of protein associations in organelles, using mass spectrometry-based proteomics. Warnock DE; Fahy E; Taylor SW Mass Spectrom Rev; 2004; 23(4):259-80. PubMed ID: 15133837 [TBL] [Abstract][Full Text] [Related]
5. Analysis of mass spectrometry data in proteomics. Matthiesen R; Jensen ON Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299 [TBL] [Abstract][Full Text] [Related]
6. Quantitative proteomics and its applications for systems biology. Ivakhno S; Kornelyuk A Biochemistry (Mosc); 2006 Oct; 71(10):1060-72. PubMed ID: 17125453 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Proteomic Analysis of the Human Nucleolus. Bensaddek D; Nicolas A; Lamond AI Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725 [TBL] [Abstract][Full Text] [Related]
8. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
9. Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis. Brüning F; Humphrey SJ; Robles MS Methods Mol Biol; 2021; 2130():185-193. PubMed ID: 33284445 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in computational analysis of mass spectrometry for proteomic profiling. Sun CS; Markey MK J Mass Spectrom; 2011 May; 46(5):443-56. PubMed ID: 21500303 [TBL] [Abstract][Full Text] [Related]
11. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Yocum AK; Chinnaiyan AM Brief Funct Genomic Proteomic; 2009 Mar; 8(2):145-57. PubMed ID: 19279071 [TBL] [Abstract][Full Text] [Related]
13. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. Manes NP; Nita-Lazar A J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276 [TBL] [Abstract][Full Text] [Related]
14. Organellar proteomics: turning inventories into insights. Andersen JS; Mann M EMBO Rep; 2006 Sep; 7(9):874-9. PubMed ID: 16953200 [TBL] [Abstract][Full Text] [Related]
15. A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes. Islam MT; Mohamedali A; Ahn SB; Nawar I; Baker MS; Ranganathan S Methods Mol Biol; 2017; 1549():163-176. PubMed ID: 27975291 [TBL] [Abstract][Full Text] [Related]
17. Complementary methods to assist subcellular fractionation in organellar proteomics. Gauthier DJ; Lazure C Expert Rev Proteomics; 2008 Aug; 5(4):603-17. PubMed ID: 18761470 [TBL] [Abstract][Full Text] [Related]
18. Quality control in mass spectrometry-based proteomics. Bittremieux W; Tabb DL; Impens F; Staes A; Timmerman E; Martens L; Laukens K Mass Spectrom Rev; 2018 Sep; 37(5):697-711. PubMed ID: 28802010 [TBL] [Abstract][Full Text] [Related]
19. Proteomic profiling by nanomaterials-based matrix-assisted laser desorption/ionization mass spectrometry for high-resolution data and novel protein information directly from biological samples. Kailasa SK; Wu HF Methods Mol Biol; 2015; 1295():479-96. PubMed ID: 25820742 [TBL] [Abstract][Full Text] [Related]
20. Advancing cell biology through proteomics in space and time (PROSPECTS). Lamond AI; Uhlen M; Horning S; Makarov A; Robinson CV; Serrano L; Hartl FU; Baumeister W; Werenskiold AK; Andersen JS; Vorm O; Linial M; Aebersold R; Mann M Mol Cell Proteomics; 2012 Mar; 11(3):O112.017731. PubMed ID: 22311636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]