BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20733237)

  • 1. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data.
    Feng J; Jiang R; Jiang T
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):621-34. PubMed ID: 20733237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A max-flow based approach to the identification of protein complexes using protein interaction and microarray data.
    Feng J; Jiang R; Jiang T
    Comput Syst Bioinformatics Conf; 2008; 7():51-62. PubMed ID: 19642268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity.
    Zhang W; Xu J; Li X; Zou X
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):939-945. PubMed ID: 27834650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B; Wang J; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):486-97. PubMed ID: 26356017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growing functional modules from a seed protein via integration of protein interaction and gene expression data.
    Maraziotis IA; Dimitrakopoulou K; Bezerianos A
    BMC Bioinformatics; 2007 Oct; 8():408. PubMed ID: 17956603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C; Mella C; Navarro G; Olivera-Nappa A; Araya J
    PLoS One; 2017; 12(9):e0183460. PubMed ID: 28937982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying protein complexes based on density and modularity in protein-protein interaction network.
    Ren J; Wang J; Li M; Wang L
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S12. PubMed ID: 24565048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):879-86. PubMed ID: 26357329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated method for finding molecular complexes in large protein interaction networks.
    Bader GD; Hogue CW
    BMC Bioinformatics; 2003 Jan; 4():2. PubMed ID: 12525261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of functional modules in a PPI network by bounded diameter clustering.
    Sohaee N; Forst CV
    J Bioinform Comput Biol; 2010 Dec; 8(6):929-43. PubMed ID: 21121019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density.
    Lei X; Yang X
    PLoS One; 2018; 13(6):e0198998. PubMed ID: 29894517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensionality reduction by UMAP to visualize physical and genetic interactions.
    Dorrity MW; Saunders LM; Queitsch C; Fields S; Trapnell C
    Nat Commun; 2020 Mar; 11(1):1537. PubMed ID: 32210240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular biological function is most effectively captured by combining molecular interaction data types.
    Ames RM; Macpherson JI; Pinney JW; Lovell SC; Robertson DL
    PLoS One; 2013; 8(5):e62670. PubMed ID: 23658761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.