BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20733243)

  • 1. Computing a smallest multilabeled phylogenetic tree from rooted triplets.
    Guillemot S; Jansson J; Sung WK
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1141-7. PubMed ID: 20733243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring phylogenetic relationships avoiding forbidden rooted triplets.
    He YJ; Huynh TN; Jansson J; Sung WK
    J Bioinform Comput Biol; 2006 Feb; 4(1):59-74. PubMed ID: 16568542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical algorithm for reconstructing level-1 phylogenetic networks.
    Huber KT; van Iersel L; Kelk S; Suchecki R
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):635-49. PubMed ID: 21393651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the elusiveness of clusters.
    Kelk SM; Scornavacca C; van Iersel L
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):517-34. PubMed ID: 21968961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fixed-parameter tractability of the maximum agreement supertree problem.
    Guillemot S; Berry V
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):342-53. PubMed ID: 20431153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polynomial-time algorithm computing lower and upper bounds of the rooted subtree prune and regraft distance.
    Kannan L; Li H; Mushegian A
    J Comput Biol; 2011 May; 18(5):743-57. PubMed ID: 21166560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metrics on multilabeled trees: interrelationships and diameter bounds.
    Huber KT; Spillner A; Suchecki R; Moulton V
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1029-40. PubMed ID: 21116046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do triplets have enough information to construct the multi-labeled phylogenetic tree?
    Hassanzadeh R; Eslahchi C; Sung WK
    PLoS One; 2014; 9(7):e103622. PubMed ID: 25080217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polynomial-time algorithms for building a consensus MUL-tree.
    Cui Y; Jansson J; Sung WK
    J Comput Biol; 2012 Sep; 19(9):1073-88. PubMed ID: 22963134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the Consistency of Resolved Triplets and Fan Triplets.
    Jansson J; Lingas A; Rajaby R; Sung WK
    J Comput Biol; 2018 Jul; 25(7):740-754. PubMed ID: 29451395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimum-flip supertrees: complexity and algorithms.
    Chen D; Eulenstein O; Fernandez-Baca D; Sanderson M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):165-73. PubMed ID: 17048402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TripNet: a method for constructing rooted phylogenetic networks from rooted triplets.
    Poormohammadi H; Eslahchi C; Tusserkani R
    PLoS One; 2014; 9(9):e106531. PubMed ID: 25208028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A metric on the space of reduced phylogenetic networks.
    Nakhleh L
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):218-22. PubMed ID: 20431142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast algorithm for computing geodesic distances in tree space.
    Owen M; Provan JS
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing level-2 phylogenetic networks from triplets.
    van Iersel L; Keijsper J; Kelk S; Stougie L; Hagen F; Boekhout T
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):667-81. PubMed ID: 19875864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing a SuperGeneTree minimizing reconciliation.
    Lafond M; Ouangraoua A; El-Mabrouk N
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S4. PubMed ID: 26451911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shorelines of islands of tractability: algorithms for parsimony and minimum perfect phylogeny haplotyping problems.
    van Iersel L; Keijsper J; Kelk S; Stougie L
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):301-12. PubMed ID: 18451439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refining phylogenetic trees given additional data: an algorithm based on parsimony.
    Wu T; Moulton V; Steel M
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):118-25. PubMed ID: 19179705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient algorithms for knowledge-enhanced supertree and supermatrix phylogenetic problems.
    Wehe A; Burleigh JG; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1432-41. PubMed ID: 24407302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.