These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20733728)

  • 1. Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices.
    McCormick FB; Tooley FA; Cloonan TJ; Brubaker JL; Lentine AL; Morrison RL; Hinterlong SJ; Herron MJ; Walker SL; Sasian JM
    Appl Opt; 1992 Sep; 31(26):5431-46. PubMed ID: 20733728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices.
    McCormick FB; Cloonan TJ; Tooley FA; Lentine AL; Sasian JM; Brubaker JL; Morrison RL; Walker SL; Crisci RJ; Novotny RA; Hinterlong SJ; Hinton HS; Kerbis E
    Appl Opt; 1993 Sep; 32(26):5153-71. PubMed ID: 20856323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays.
    McCormick FB; Cloonan TJ; Lentine AL; Sasian JM; Morrison RL; Beckman MG; Walker SL; Wojcik MJ; Hinterlong SJ; Crisci RJ; Novotny RA; Hinton HS
    Appl Opt; 1994 Mar; 33(8):1601-18. PubMed ID: 20862186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascaded operation of arrays of symmetric self-electro-optic effect devices.
    Prise ME; Craft NC; Lamarche RE; Downs MM; D'Asaro LA; Chirovsky LM
    Appl Opt; 1991 Jul; 30(20):2841-3. PubMed ID: 20706319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a symmetric self-electro-optic-effect-device cellular-logic image processor.
    Tooley FA; Wakelin S
    Appl Opt; 1993 Apr; 32(11):1850-62. PubMed ID: 20820318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays.
    Yamaguchi M; Yamamoto T; Yukimatsu K; Matsuo S; Amano C; Nakano Y; Kurokawa T
    Appl Opt; 1994 Mar; 33(8):1337-44. PubMed ID: 20862159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Module for optical logic circuits using symmetric self-electrooptic effect devices.
    Prise ME; Craft NC; Lamarche RE; Downs MM; Walker SJ; D'Asaro LA; Chirovsky LM
    Appl Opt; 1990 May; 29(14):2164-70. PubMed ID: 20563145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance analysis of cascaded self-electro-optic-effect-device arrays.
    Desmulliez MP; Wherrett BS; Snowdon JF
    Appl Opt; 1994 Mar; 33(8):1368-75. PubMed ID: 20862162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental free-space optical network for massively parallel computers.
    Araki S; Kajita M; Kasahara K; Kubota K; Kurihara K; Redmond I; Schenfeld E; Suzaki T
    Appl Opt; 1996 Mar; 35(8):1269-81. PubMed ID: 21085240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between speed and tolerances for self-electro-optic-effect devices.
    Lentine AL; Tooley FA
    Appl Opt; 1994 Mar; 33(8):1354-67. PubMed ID: 20862161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconnects for a symmetric-self-electro-optic-effect-device cellular-logic image processor.
    Tooley FA; Wakelin S; Taghizadeh MR
    Appl Opt; 1994 Mar; 33(8):1398-404. PubMed ID: 20862166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond multistage interconnection network architecture for optical computing.
    Guizani M
    Appl Opt; 1994 Mar; 33(8):1587-99. PubMed ID: 20862185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-routing crossbar packet switch employing free-space optics for chip-to-chip Interconnections.
    Cloonan TJ; Lentine AL
    Appl Opt; 1991 Sep; 30(26):3721-33. PubMed ID: 20706450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam array generation and holographic interconnections in a free-space optical switching network.
    Morrison RL; Walker SL; Cloonan TJ
    Appl Opt; 1993 May; 32(14):2512-8. PubMed ID: 20820411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-space photonic switching architectures based on extended generalized shuffle networks.
    Cloonan TJ; Richards GW; Lentine AL; McCormick FB; Erickson JR
    Appl Opt; 1992 Dec; 31(35):7471-92. PubMed ID: 20802624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acousto-optic photonic crossbar switch. Part I: design.
    McLeod RR; Wu KY; Wagner K; Weverka RT
    Appl Opt; 1996 Nov; 35(32):6331-53. PubMed ID: 21127658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-programmable logic devices with optical input-output.
    Szymanski TH; Saint-Laurent M; Tyan V; Au A; Supmonchai B
    Appl Opt; 2000 Feb; 39(5):721-32. PubMed ID: 18337947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical perfect-shuffle-exchange interconnection network using a liquid-crystal spatial light switch.
    Cao M; Luo F; Li H; Wang S
    Appl Opt; 1992 Nov; 31(32):6817-9. PubMed ID: 20733914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-space optical crossbar network integrated in a single block of LiNbO3 crystal.
    Song Z; Hou P; Fu L; Fan L; Gao Y; Ding Y; Wang Y; Feng Q
    Appl Opt; 2012 Mar; 51(9):1328-35. PubMed ID: 22441479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital optical cellular image processor (DOCIP): experimental implementation.
    Huang KS; Sawchuk AA; Jenkins BK; Chavel P; Wang JM; Weber AG; Wang CH; Glaser I
    Appl Opt; 1993 Jan; 32(2):166-73. PubMed ID: 20802673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.