These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20733780)

  • 1. Cloud clearing with a CO(2) laser in a cirrus cloud simulation facility.
    Waggoner AP; Radke LF; Buonadonna V; Dowling DR
    Appl Opt; 1992 Sep; 31(27):5871-7. PubMed ID: 20733780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cold cloud clearing by pulsed CO(2) lasers.
    Waggoner AP; Radke LF
    Appl Opt; 1989 Aug; 28(15):3039-43. PubMed ID: 20555649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses.
    Sassen K
    Appl Opt; 1991 Aug; 30(24):3421-8. PubMed ID: 20706407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared transmission through cirrus clouds: a radiative model for target detection.
    Liou KN; Takano Y; Ou SC; Heymsfield A; Kreiss W
    Appl Opt; 1990 May; 29(13):1886-96. PubMed ID: 20563105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mars water-ice clouds and precipitation.
    Whiteway JA; Komguem L; Dickinson C; Cook C; Illnicki M; Seabrook J; Popovici V; Duck TJ; Davy R; Taylor PA; Pathak J; Fisher D; Carswell AI; Daly M; Hipkin V; Zent AP; Hecht MH; Wood SE; Tamppari LK; Renno N; Moores JE; Lemmon MT; Daerden F; Smith PH
    Science; 2009 Jul; 325(5936):68-70. PubMed ID: 19574386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why does large relative humidity with respect to ice persist in cirrus ice clouds?
    Bogdan A; Molina MJ
    J Phys Chem A; 2009 Dec; 113(51):14123-30. PubMed ID: 19925002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C.
    Rosenfeld D; Woodley WL
    Nature; 2000 May; 405(6785):440-2. PubMed ID: 10839535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cirrus cloud transmittance and backscatter in the infrared measured with a CO(2) lidar.
    Hall FF; Cupp RE; Troxel SW
    Appl Opt; 1988 Jun; 27(12):2510-6. PubMed ID: 20531784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study of the remote sensing of optical and microphysical properties of cirrus clouds from satellite IR measurements.
    Xu L; Zhang J
    Appl Opt; 1995 May; 34(15):2724-36. PubMed ID: 21052418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cirrus cloud iridescence: a rare case study.
    Sassen K
    Appl Opt; 2003 Jan; 42(3):486-91. PubMed ID: 12570270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cirrus clouds on the VISSR atmospheric sounder-derived sea surface temperature determinations.
    Xu L; Sun B
    Appl Opt; 1991 Apr; 30(12):1525-36. PubMed ID: 20700315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer.
    Sassen K; Mace GG; Hallett J; Poellot MR
    Appl Opt; 1998 Mar; 37(9):1477-85. PubMed ID: 18268738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.
    Gao RS; Popp PJ; Fahey DW; Marcy TP; Herman RL; Weinstock EM; Baumgardner DG; Garrett TJ; Rosenlof KH; Thompson TL; Bui PT; Ridley BA; Wofsy SC; Toon OB; Tolbert MA; Kärcher B; Peter T; Hudson PK; Weinheimer AJ; Heymsfield AJ
    Science; 2004 Jan; 303(5657):516-20. PubMed ID: 14739457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.
    Sassen K; Knight NC; Takano Y; Heymsfield AJ
    Appl Opt; 1994 Jul; 33(21):4590-601. PubMed ID: 20935827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.
    Liou KN; Ou SC; Takano Y; Cetola J
    Appl Opt; 2006 Sep; 45(26):6849-59. PubMed ID: 16926921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.
    Sassen K; Zhao H; Dodd GC
    Appl Opt; 1992 May; 31(15):2914-23. PubMed ID: 20725225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CALIPSO (IIR-CALIOP) Retrievals of Cirrus Cloud Ice Particle Concentrations.
    Mitchell DL; Garnier A; Pelon J; Erfani E
    Atmos Chem Phys; 2018; 18(23):17325-17354. PubMed ID: 31662738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.