These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20734496)

  • 1. Photoinduced electron transfer occurs between 2-aminopurine and the DNA nucleic acid monophosphates: results from cyclic voltammetry and fluorescence quenching.
    Narayanan M; Kodali G; Xing Y; Stanley RJ
    J Phys Chem B; 2010 Aug; 114(32):10573-80. PubMed ID: 20734496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential fluorescence quenching of fluorescent nucleic acid base analogues by native nucleic acid monophosphates.
    Narayanan M; Kodali G; Singh V; Xing Y; Hawkins ME; Stanley RJ
    J Phys Chem B; 2010 May; 114(17):5953-63. PubMed ID: 20387838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic and static quenching of 2-aminopurine fluorescence by the natural DNA nucleotides in solution.
    Paterson KA; Arlt J; Jones AC
    Methods Appl Fluoresc; 2020 Feb; 8(2):025002. PubMed ID: 32000159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.
    Rachofsky EL; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):946-56. PubMed ID: 11170416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine.
    Rachofsky EL; Seibert E; Stivers JT; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):957-67. PubMed ID: 11170417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buffer-Dependent Photophysics of 2-Aminopurine: Insights into Fluorescence Quenching and Excited-State Interactions.
    Poddar S; Levitus M
    J Phys Chem B; 2024 Mar; 128(11):2640-2651. PubMed ID: 38452253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural heterogeneity in DNA: temperature dependence of 2-aminopurine fluorescence in dinucleotides.
    Somsen OJ; Keukens LB; de Keijzer MN; van Hoek A; van Amerongen H
    Chemphyschem; 2005 Aug; 6(8):1622-7. PubMed ID: 16082664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciplexes and conical intersections lead to fluorescence quenching in π-stacked dimers of 2-aminopurine with natural purine nucleobases.
    Liang J; Nguyen QL; Matsika S
    Photochem Photobiol Sci; 2013 Aug; 12(8):1387-400. PubMed ID: 23625036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching of fluorescent nucleobases by neighboring DNA: the "insulator" concept.
    Wilson JN; Cho Y; Tan S; Cuppoletti A; Kool ET
    Chembiochem; 2008 Jan; 9(2):279-85. PubMed ID: 18072185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the origin of multiexponential fluorescence decays from 2-aminopurine-labeled dinucleotides.
    Remington JM; Philip AM; Hariharan M; Kohler B
    J Chem Phys; 2016 Oct; 145(15):155101. PubMed ID: 27782452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of base stacking and hydrogen bonding on the fluorescence of 2-aminopurine and pyrrolocytosine in nucleic acids.
    Hardman SJ; Thompson KC
    Biochemistry; 2006 Aug; 45(30):9145-55. PubMed ID: 16866360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking.
    Jean JM; Hall KB
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):37-41. PubMed ID: 11120885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence properties of 8-(2-pyridyl)guanine "2PyG" as compared to 2-aminopurine in DNA.
    Dumas A; Luedtke NW
    Chembiochem; 2011 Sep; 12(13):2044-51. PubMed ID: 21786378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways for fluorescence quenching in 2-aminopurine π-stacked with pyrimidine nucleobases.
    Liang J; Matsika S
    J Am Chem Soc; 2011 May; 133(17):6799-808. PubMed ID: 21486032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced electron transfer in a Watson-Crick base-paired, 2-aminopurine:uracil-C60 hydrogen bonding conjugate.
    D'Souza F; Gadde S; Islam DM; Pang SC; Schumacher AL; Zandler ME; Horie R; Araki Y; Ito O
    Chem Commun (Camb); 2007 Feb; (5):480-2. PubMed ID: 17252101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer between bases in double helical DNA.
    Kelley SO; Barton JK
    Science; 1999 Jan; 283(5400):375-81. PubMed ID: 9888851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence dependence of energy transfer in DNA oligonucleotides.
    Xu DG; Nordlund TM
    Biophys J; 2000 Feb; 78(2):1042-58. PubMed ID: 10653818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond charge transfer dynamics of a modified DNA base: 2-aminopurine in complexes with nucleotides.
    Fiebig T; Wan C; Zewail AH
    Chemphyschem; 2002 Sep; 3(9):781-8. PubMed ID: 12436905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding.
    Bonnist EY; Liebert K; Dryden DT; Jeltsch A; Jones AC
    Biophys Chem; 2012 Jan; 160(1):28-34. PubMed ID: 21962489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.