These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2073452)
21. Internal fixation of type-C distal femoral fractures in osteoporotic bone. Wähnert D; Hoffmeier KL; von Oldenburg G; Fröber R; Hofmann GO; Mückley T J Bone Joint Surg Am; 2010 Jun; 92(6):1442-52. PubMed ID: 20516320 [TBL] [Abstract][Full Text] [Related]
22. Compound osteosynthesis of pathological fractures of the proximal femoral shaft. Experimental studies on the biomechanical effects of additional intramedullary splinting. Heller KD; Zilkens KW; Cohen B; Hammer J Arch Orthop Trauma Surg; 1996; 115(2):115-7. PubMed ID: 9063850 [TBL] [Abstract][Full Text] [Related]
23. Distal femoral fractures in the elderly: biomechanical analysis of a polyaxial angle-stable locking plate versus a retrograde intramedullary nail in a human cadaveric bone model. Bliemel C; Buecking B; Mueller T; Wack C; Koutras C; Beck T; Ruchholtz S; Zettl R Arch Orthop Trauma Surg; 2015 Jan; 135(1):49-58. PubMed ID: 25388863 [TBL] [Abstract][Full Text] [Related]
24. A method for fixation of femoral fractures below previous hip implants. Kolmert L J Trauma; 1987 Apr; 27(4):407-10. PubMed ID: 3573087 [TBL] [Abstract][Full Text] [Related]
25. [Plate osteosynthesis of femoral shaft fracture with reference to biological aspects]. Thielemann FW; Blersch E; Holz U Unfallchirurg; 1988 Sep; 91(9):389-94. PubMed ID: 3187545 [No Abstract] [Full Text] [Related]
26. Use of locking compression plates for long bone nonunions without removing existing intramedullary nail: review of literature and our experience. Nadkarni B; Srivastav S; Mittal V; Agarwal S J Trauma; 2008 Aug; 65(2):482-6. PubMed ID: 18695487 [TBL] [Abstract][Full Text] [Related]
27. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L Clin Biomech (Bristol); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766 [TBL] [Abstract][Full Text] [Related]
28. A biomechanical comparison of various methods of stabilization of subtrochanteric fractures of the femur. Tencer AF; Johnson KD; Johnston DW; Gill K J Orthop Res; 1984; 2(3):297-305. PubMed ID: 6491820 [TBL] [Abstract][Full Text] [Related]
29. [Internal fixation of radial shaft fractures: Anatomical and biomechanical principles]. Bartoníček J; Naňka O; Tuček M Rozhl Chir; 2015 Oct; 94(10):425-36. PubMed ID: 26556020 [TBL] [Abstract][Full Text] [Related]
30. Comparison of compression hip screw and gamma nail for treatment of peritrochanteric fractures. Bess RJ; Jolly SA J South Orthop Assoc; 1997; 6(3):173-9. PubMed ID: 9322196 [TBL] [Abstract][Full Text] [Related]
31. Biomechanical comparison of a 3.5-mm conical coupling plating system and a 3.5-mm locking compression plate applied as plate-rod constructs to an experimentally created fracture gap in femurs of canine cadavers. Tremolada G; Lewis DD; Paragnani KL; Conrad BP; Kim SE; Pozzi A Am J Vet Res; 2017 Jun; 78(6):712-717. PubMed ID: 28541152 [TBL] [Abstract][Full Text] [Related]
32. Do Transcortical Screws in a Locking Plate Construct Improve the Stiffness in the Fixation of Vancouver B1 Periprosthetic Femur Fractures? A Biomechanical Analysis of 2 Different Plating Constructs. Lochab J; Carrothers A; Wong E; McLachlin S; Aldebeyan W; Jenkinson R; Whyne C; Nousiainen MT J Orthop Trauma; 2017 Jan; 31(1):15-20. PubMed ID: 28002219 [TBL] [Abstract][Full Text] [Related]
33. Retrograde intramedullary nails with distal screws locked to the nail have higher fatigue strength than locking plates in the treatment of supracondylar femoral fractures: A cadaver-based laboratory investigation. Pekmezci M; McDonald E; Buckley J; Kandemir U Bone Joint J; 2014 Jan; 96-B(1):114-21. PubMed ID: 24395321 [TBL] [Abstract][Full Text] [Related]
34. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system. Hoffmann MF; Burgers TA; Mason JJ; Williams BO; Sietsema DL; Jones CB Injury; 2014 Jul; 45(7):1035-41. PubMed ID: 24680467 [TBL] [Abstract][Full Text] [Related]
35. [Per- and subtrochanteric fractures]. Kohler H Z Orthop Unfall; 2008; 146(1):137-46. PubMed ID: 18383607 [No Abstract] [Full Text] [Related]
36. [Distal fractures of the femur]. Schandelmaier P; Gössling T; Partenheimer A; Krettek C Chirurg; 2002 Dec; 73(12):1221-33; quiz 1233-4. PubMed ID: 12491053 [No Abstract] [Full Text] [Related]
37. Intramedullary compression osteosynthesis for fractures of the femur. Vicenzi G; Graci A; Moroni A; Toni A Ital J Orthop Traumatol; 1984 Mar; 10(1):61-6. PubMed ID: 6735726 [TBL] [Abstract][Full Text] [Related]
38. Comparison of compression plate and flexible intramedullary nail fixation in pediatric femoral shaft fractures. Caglar O; Aksoy MC; Yazici M; Surat A J Pediatr Orthop B; 2006 May; 15(3):210-4. PubMed ID: 16601591 [TBL] [Abstract][Full Text] [Related]
39. Biomechanical analysis comparing titanium elastic nails with locked plating in two simulated pediatric femur fracture models. Porter SE; Booker GR; Parsell DE; Weber MD; Russell GV; Woodall J; Wagner M; Neubauer T J Pediatr Orthop; 2012 Sep; 32(6):587-93. PubMed ID: 22892620 [TBL] [Abstract][Full Text] [Related]
40. A biomechanical assessment of plate fixation, with insufficient bony support. Beaupré GS; Carter DR; Dueland RT; Caler WE; Spengler DM J Orthop Res; 1988; 6(5):721-9. PubMed ID: 3404329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]