BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20734611)

  • 1. Heavy metal removal potential of dried Salvinia biomass.
    Dhir B; Nasim SA; Sharmila P; Saradhi PP
    Int J Phytoremediation; 2010 Feb; 12(2):133-41. PubMed ID: 20734611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.
    Jones BO; John OO; Luke C; Ochieng A; Bassey BJ
    J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.
    Dhir B; Srivastava S
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):720-4. PubMed ID: 23553503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.
    Bayramoglu G; Arica MY; Adiguzel N
    Chemosphere; 2012 Sep; 89(3):302-9. PubMed ID: 22608134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass.
    Módenes AN; de Oliveira AP; Espinoza-Quiñones FR; Trigueros DEG; Kroumov AD; Bergamasco R
    Chemosphere; 2017 Apr; 172():373-383. PubMed ID: 28088528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel.
    Feng N; Guo X; Liang S; Zhu Y; Liu J
    J Hazard Mater; 2011 Jan; 185(1):49-54. PubMed ID: 20965652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.
    Huang Z; Wu Q; Liu S; Liu T; Zhang B
    Carbohydr Polym; 2013 Sep; 97(2):496-501. PubMed ID: 23911476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.
    Rahman MS; Sathasivam KV
    Biomed Res Int; 2015; 2015():126298. PubMed ID: 26295032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Adsorptive Removal of Methylene Blue Using Dried Biomass of Rhizopus oryzae.
    Dey MD; Shukla R; Bordoloi NK; Doley R; Mukhopadhyay R
    Appl Biochem Biotechnol; 2015 Sep; 177(2):541-55. PubMed ID: 26234436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.
    Bulgariu D; Bulgariu L
    Bioresour Technol; 2012 Jan; 103(1):489-93. PubMed ID: 22055103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents.
    Pandey PK; Verma Y; Choubey S; Pandey M; Chandrasekhar K
    Bioresour Technol; 2008 Jul; 99(10):4420-7. PubMed ID: 17892931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial and plant derived biomass for removal of heavy metals from wastewater.
    Ahluwalia SS; Goyal D
    Bioresour Technol; 2007 Sep; 98(12):2243-57. PubMed ID: 16427277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive adsorption of metals on cabbage waste from multi-metal solutions.
    Hossain MA; Ngo HH; Guo WS; Nghiem LD; Hai FI; Vigneswaran S; Nguyen TV
    Bioresour Technol; 2014 May; 160():79-88. PubMed ID: 24461255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.
    Gola D; Dey P; Bhattacharya A; Mishra A; Malik A; Namburath M; Ahammad SZ
    Bioresour Technol; 2016 Oct; 218():388-96. PubMed ID: 27387415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.
    Kırbıyık Ç; Pütün AE; Pütün E
    Water Sci Technol; 2016; 73(2):423-36. PubMed ID: 26819399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina.
    Kumar JI; Oommen C
    J Environ Biol; 2012 Jan; 33(1):27-31. PubMed ID: 23033639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the disposal process for removing heavy metal ions from wastewater by composite biosorbent of nano Fe3O4/Sphaerotilus natans].
    Guan XH; Qin YC; Wang LW; Yin R; Lu M; Yang YJ
    Huan Jing Ke Xue; 2007 Feb; 28(2):436-40. PubMed ID: 17489213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.