These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20734611)

  • 21. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive?
    Colzi I; Lastrucci L; Rangoni M; Coppi A; Gonnelli C
    J Environ Manage; 2018 May; 213():320-328. PubMed ID: 29502017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review.
    Ramrakhiani L; Ghosh S; Majumdar S
    Appl Biochem Biotechnol; 2016 Sep; 180(1):41-78. PubMed ID: 27097928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems.
    Rodrigues MS; Ferreira LS; de Carvalho JC; Lodi A; Finocchio E; Converti A
    J Hazard Mater; 2012 May; 217-218():246-55. PubMed ID: 22480702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves.
    Sangi MR; Shahmoradi A; Zolgharnein J; Azimi GH; Ghorbandoost M
    J Hazard Mater; 2008 Jul; 155(3):513-22. PubMed ID: 18191021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal removal by biosorption using Phanerochaete chrysosporium.
    Gopal M; Pakshirajan K; Swaminathan T
    Appl Biochem Biotechnol; 2002; 102-103(1-6):227-37. PubMed ID: 12396126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm.
    Iqbal M; Saeed A
    Environ Technol; 2002 Oct; 23(10):1091-8. PubMed ID: 12465835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of Cr(III), Ni(II) and Cu(II) by poly(gamma-glutamic acid) from Bacillus subtilis NX-2.
    Yao J; Xu H; Wang J; Jiang M; Ouyang P
    J Biomater Sci Polym Ed; 2007; 18(2):193-204. PubMed ID: 17323853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds.
    Akl FMA; Ahmed SI; El-Sheekh MM; Makhlof MEM
    Environ Sci Pollut Res Int; 2023 Oct; 30(47):104814-104832. PubMed ID: 37713082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water.
    Boubakri S; Djebbi MA; Bouaziz Z; Namour P; Ben Haj Amara A; Ghorbel-Abid I; Kalfat R
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27879-27896. PubMed ID: 28988320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system.
    Wang X; Zhao C; Zhao P; Dou P; Ding Y; Xu P
    Bioresour Technol; 2009 Apr; 100(7):2301-4. PubMed ID: 19059775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK; Tewari S; Rai JP
    Bioresour Technol; 2008 Apr; 99(6):1932-8. PubMed ID: 17513104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosurfactant of marine origin exhibiting heavy metal remediation properties.
    Das P; Mukherjee S; Sen R
    Bioresour Technol; 2009 Oct; 100(20):4887-90. PubMed ID: 19505818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal.
    Sargın İ; Kaya M; Arslan G; Baran T; Ceter T
    Bioresour Technol; 2015 Feb; 177():1-7. PubMed ID: 25479387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal induced physiological alterations in Salvinia natans.
    Dhir B; Sharmila P; Pardha Saradhi P; Sharma S; Kumar R; Mehta D
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1678-84. PubMed ID: 21724257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions.
    Ozsoy HD; Kumbur H; Saha B; van Leeuwen JH
    Bioresour Technol; 2008 Jul; 99(11):4943-8. PubMed ID: 17964150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effectiveness of anaerobic biomass in adsorbing heavy metals.
    Haytoglu B; Demirer GN; Yetis U
    Water Sci Technol; 2001; 44(10):245-52. PubMed ID: 11794661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima.
    Iha DS; Bianchini I
    Int J Phytoremediation; 2015; 17(10):929-35. PubMed ID: 25848891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.
    Lee SY; Choi HJ
    J Environ Manage; 2018 Mar; 209():382-392. PubMed ID: 29309963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.