These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 20734613)
1. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Karimi N; Ghaderian SM; Maroofi H; Schat H Int J Phytoremediation; 2010 Feb; 12(2):159-73. PubMed ID: 20734613 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Jamali Hajiani N; Ghaderian SM; Karimi N; Schat H Environ Sci Pollut Res Int; 2015 Nov; 22(21):16542-53. PubMed ID: 26077322 [TBL] [Abstract][Full Text] [Related]
3. Trace elements concentrations in soil, desert-adapted and non-desert plants in central Iran: Spatial patterns and uncertainty analysis. Sakizadeh M; Rodríguez Martín JA; Zhang C; Sharafabadi FM; Ghorbani H Environ Pollut; 2018 Dec; 243(Pt A):270-281. PubMed ID: 30189391 [TBL] [Abstract][Full Text] [Related]
4. Arsenic distribution in soils and plants of an arsenic impacted former mining area. Otones V; Álvarez-Ayuso E; García-Sánchez A; Santa Regina I; Murciego A Environ Pollut; 2011 Oct; 159(10):2637-47. PubMed ID: 21700372 [TBL] [Abstract][Full Text] [Related]
5. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
6. Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Madejón P; Lepp NW Sci Total Environ; 2007 Jul; 379(2-3):256-62. PubMed ID: 17034834 [TBL] [Abstract][Full Text] [Related]
7. Potential of indigenous plant species for phytoremediation of metal(loid)-contaminated soil in the Baoshan mining area, China. Pan P; Lei M; Qiao P; Zhou G; Wan X; Chen T Environ Sci Pollut Res Int; 2019 Aug; 26(23):23583-23592. PubMed ID: 31203537 [TBL] [Abstract][Full Text] [Related]
8. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile. Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519 [TBL] [Abstract][Full Text] [Related]
9. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam. Nguyen TH; Sakakibara M; Sano S; Mai TN J Hazard Mater; 2011 Feb; 186(2-3):1384-91. PubMed ID: 21227580 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
11. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Liao XY; Chen TB; Xie H; Liu YR Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Shumaker KL; Begonia G Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830 [TBL] [Abstract][Full Text] [Related]
13. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Jung HI; Lee J; Chae MJ; Kong MS; Lee CH; Kang SS; Kim YH Environ Monit Assess; 2017 Nov; 189(12):638. PubMed ID: 29147882 [TBL] [Abstract][Full Text] [Related]
14. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Obrist D; Pearson C; Webster J; Kane T; Lin CJ; Aiken GR; Alpers CN Sci Total Environ; 2016 Oct; 568():522-535. PubMed ID: 26775833 [TBL] [Abstract][Full Text] [Related]
15. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia. Ghazaryan K; Movsesyan H; Ghazaryan N; Watts BA Environ Pollut; 2019 Jun; 249():491-501. PubMed ID: 30928521 [TBL] [Abstract][Full Text] [Related]
16. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey. Sasmaz M; Akgül B; Sasmaz A Bull Environ Contam Toxicol; 2015 May; 94(5):598-603. PubMed ID: 25800342 [TBL] [Abstract][Full Text] [Related]
17. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583 [TBL] [Abstract][Full Text] [Related]
18. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Simmler M; Suess E; Christl I; Kotsev T; Kretzschmar R Sci Total Environ; 2016 Dec; 572():742-754. PubMed ID: 27614862 [TBL] [Abstract][Full Text] [Related]
19. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Marabottini R; Stazi SR; Papp R; Grego S; Moscatelli MC Ecotoxicol Environ Saf; 2013 Oct; 96():147-53. PubMed ID: 23856118 [TBL] [Abstract][Full Text] [Related]
20. Identification of As accumulation plant species growing on highly contaminated soils. Gisbert C; Almela C; Vélez D; López-Moya JR; de Haro A; Serrano R; Montoro R; Navarro-Aviñó J Int J Phytoremediation; 2008; 10(3):183-94. PubMed ID: 18710094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]