These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20734615)

  • 1. Phytoremediation of water and soil contaminated with imidacloprid pesticide by Plantago major, L.
    Romeh AA
    Int J Phytoremediation; 2010 Feb; 12(2):188-99. PubMed ID: 20734615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic use of Plantago major and effective microorganisms, EM1 to clean up the soil polluted with imidacloprid under laboratory and field condition.
    Romeh AA
    Int J Phytoremediation; 2020; 22(14):1515-1523. PubMed ID: 32615776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of imidacloprid by consortium of two soil isolated Bacillus sp.
    Sharma S; Singh B; Gupta VK
    Bull Environ Contam Toxicol; 2014 Nov; 93(5):637-42. PubMed ID: 25257222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of cyanophos insecticide by Plantago major L. in water.
    Romeh AA
    J Environ Health Sci Eng; 2014 Jan; 12(1):38. PubMed ID: 24447385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil.
    Flores-Céspedes F; González-Pradas E; Fernández-Pérez M; Villafranca-Sánchez M; Socías-Viciana M; Ureña-Amate MD
    J Environ Qual; 2002; 31(3):880-8. PubMed ID: 12026091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.
    Kandil MM; El-Aswad AF; Koskinen WC
    J Environ Sci Health B; 2015; 50(7):473-83. PubMed ID: 25996811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive methodology for simultaneous determination of residues of imidacloprid and its metabolites in sugarcane leaves and soil.
    Sharma S; Mandal K; Singh B
    J AOAC Int; 2014; 97(4):1183-8. PubMed ID: 25145155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residue dynamics of spirotetramat and imidacloprid in/on mango and soil.
    Mohapatra S; Deepa M; Lekha S; Nethravathi B; Radhika B; Gourishanker S
    Bull Environ Contam Toxicol; 2012 Oct; 89(4):862-7. PubMed ID: 22872376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus.
    Sharma S; Singh B; Gupta VK
    Environ Monit Assess; 2014 Nov; 186(11):7183-93. PubMed ID: 25052329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic degradation of imidacloprid in paddy field soil.
    Akoijam R; Singh B
    Environ Monit Assess; 2014 Oct; 186(10):5977-84. PubMed ID: 24891072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and phytoremediation of Plantago major L. to protect tomato plants from the contamination of cypermethrin pesticide.
    Aioub AAA; Zuo Y; Aioub AAA; Hu Z
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43992-44001. PubMed ID: 33843003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imidacloprid residues in Willapa Bay (Washington State) water and sediment following application for control of burrowing shrimp.
    Felsot AS; Ruppert JR
    J Agric Food Chem; 2002 Jul; 50(15):4417-23. PubMed ID: 12105979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation potential of three terrestrial plant species for removal of atrazine, azoxystrobin, and imidacloprid.
    McKnight AM; Gannon TW; Yelverton F
    Int J Phytoremediation; 2022; 24(2):187-195. PubMed ID: 34098815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Abiotic Factors on Degradation of Imidacloprid.
    Mahapatra B; Adak T; Patil NKB; Pandi GGP; Gowda GB; Yadav MK; Mohapatra SD; Rath PC; Munda S; Jena M
    Bull Environ Contam Toxicol; 2017 Oct; 99(4):475-480. PubMed ID: 28840262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and sorption of imidacloprid in dissimilar surface and subsurface soils.
    Anhalt JC; Moorman TB; Koskinen WC
    J Environ Sci Health B; 2008; 43(3):207-13. PubMed ID: 18368539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcritical water extraction to evaluate desorption behavior of organic pesticides in soil.
    Konda LN; Füleky G; Morovján G
    J Agric Food Chem; 2002 Apr; 50(8):2338-43. PubMed ID: 11929294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption and degradation of imidacloprid in soil and water.
    Liu W; Zheng W; Ma Y; Liu KK
    J Environ Sci Health B; 2006; 41(5):623-34. PubMed ID: 16785171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of azoxystrobin and imidacloprid by wetland plant species
    McKnight AM; Gannon TW; Yelverton F
    Int J Phytoremediation; 2022; 24(2):196-204. PubMed ID: 34126808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.
    Mandal A; Singh N; Nain L
    J Environ Sci Health B; 2017 Sep; 52(9):671-682. PubMed ID: 28679066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area.
    Nadgórska-Socha A; Kandziora-Ciupa M; Ciepał R
    Environ Monit Assess; 2015 Jul; 187(7):441. PubMed ID: 26088758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.