BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20734913)

  • 21. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils.
    Saifullah ; Zia MH; Meers E; Ghafoor A; Murtaza G; Sabir M; Zia-Ur-Rehman M; Tack FM
    Chemosphere; 2010 Apr; 79(6):652-8. PubMed ID: 20334894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy.
    Castro-Rodríguez V; García-Gutiérrez A; Canales J; Cañas RA; Kirby EG; Avila C; Cánovas FM
    Plant Biotechnol J; 2016 Jan; 14(1):299-312. PubMed ID: 25923308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana.
    Guo J; Dai X; Xu W; Ma M
    Chemosphere; 2008 Jul; 72(7):1020-6. PubMed ID: 18504054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transgenic plants for phytoremediation: helping nature to clean up environmental pollution.
    Van Aken B
    Trends Biotechnol; 2008 May; 26(5):225-7. PubMed ID: 18353473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of submerged plant (Vallisneria spinulosa) clones to lead stress in the heterogenous soil.
    Yan X; Yu D; Wang H; Wang J
    Chemosphere; 2006 Jun; 63(9):1459-65. PubMed ID: 16289224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.).
    Saifullah ; Ghafoor A; Zia MH; Murtaza G; Waraich EA; Bibi S; Srivastava P
    Int J Phytoremediation; 2010 Sep; 12(7):633-49. PubMed ID: 21166273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation.
    Barocsi A; Csintalan Z; Kocsanyi L; Dushenkov S; Kuperberg JM; Kucharski R; Richter PI
    Int J Phytoremediation; 2003; 5(1):13-23. PubMed ID: 12710232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Distribution of Pb and Zn in transgenic metallothionein tobacco].
    Sheng JP; Li HC; Liu KL; Ru BG; Shen L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2401-3. PubMed ID: 19123416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil.
    Ruley AT; Sharma NC; Sahi SV; Singh SR; Sajwan KS
    Environ Pollut; 2006 Nov; 144(1):11-8. PubMed ID: 16522347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.
    Cui S; Zhang T; Zhao S; Li P; Zhou Q; Zhang Q; Han Q
    Int J Phytoremediation; 2013; 15(4):299-306. PubMed ID: 23487996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A field study of lead phytoextraction by various scented Pelargonium cultivars.
    Arshad M; Silvestre J; Pinelli E; Kallerhoff J; Kaemmerer M; Tarigo A; Shahid M; Guiresse M; Pradere P; Dumat C
    Chemosphere; 2008 May; 71(11):2187-92. PubMed ID: 18355894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Chemosphere; 2006 Oct; 65(4):567-74. PubMed ID: 16581104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis.
    Xiao S; Gao W; Chen QF; Ramalingam S; Chye ML
    Plant J; 2008 Apr; 54(1):141-51. PubMed ID: 18182029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer.
    Zou T; Li T; Zhang X; Yu H; Luo H
    J Hazard Mater; 2011 Feb; 186(1):683-9. PubMed ID: 21144654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.