These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 20735025)
1. Immobilization of porphyrin derivatives with a defined distance and orientation onto a gold electrode using synthetic light-harvesting α-helix hydrophobic polypeptides. Ochiai T; Nagata M; Shimoyama K; Amano M; Kondo M; Dewa T; Hashimoto H; Nango M Langmuir; 2010 Sep; 26(18):14419-22. PubMed ID: 20735025 [TBL] [Abstract][Full Text] [Related]
3. Design and expression of cysteine-bearing hydrophobic polypeptides and their self-assembling properties with bacteriochlorophyll a derivatives as a mimic of bacterial photosynthetic antenna complexes. Effect of steric confinement and orientation of the polypeptides on the pigment/polypeptide assembly process. Dewa T; Yamada T; Ogawa M; Sugimoto M; Mizuno T; Yoshida K; Nakao Y; Kondo M; Iida K; Yamashita K; Tanaka T; Nango M Biochemistry; 2005 Apr; 44(13):5129-39. PubMed ID: 15794650 [TBL] [Abstract][Full Text] [Related]
4. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Kondo M; Iida K; Dewa T; Tanaka H; Ogawa T; Nagashima S; Nagashima KV; Shimada K; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M Biomacromolecules; 2012 Feb; 13(2):432-8. PubMed ID: 22239547 [TBL] [Abstract][Full Text] [Related]
5. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Meadows KA; Parkes-Loach PS; Kehoe JW; Loach PA Biochemistry; 1998 Mar; 37(10):3411-7. PubMed ID: 9521662 [TBL] [Abstract][Full Text] [Related]
6. Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions. Wang ZY; Gokan K; Kobayashi M; Nozawa T J Mol Biol; 2005 Mar; 347(2):465-77. PubMed ID: 15740753 [TBL] [Abstract][Full Text] [Related]
7. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Kehoe JW; Meadows KA; Parkes-Loach PS; Loach PA Biochemistry; 1998 Mar; 37(10):3418-28. PubMed ID: 9521663 [TBL] [Abstract][Full Text] [Related]
8. Molecular assembly of zinc chlorophyll derivatives by using recombinant light-harvesting polypeptides with His-tag and immobilization on a gold electrode. Sakai S; Noji T; Kondo M; Mizuno T; Dewa T; Ochiai T; Yamakawa H; Itoh S; Hashimoto H; Nango M Langmuir; 2013 Apr; 29(17):5104-9. PubMed ID: 23590586 [TBL] [Abstract][Full Text] [Related]
9. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Todd JB; Parkes-Loach PS; Leykam JF; Loach PA Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861 [TBL] [Abstract][Full Text] [Related]
10. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. den Hollander MJ; Magis JG; Fuchsenberger P; Aartsma TJ; Jones MR; Frese RN Langmuir; 2011 Aug; 27(16):10282-94. PubMed ID: 21728318 [TBL] [Abstract][Full Text] [Related]
11. A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. Kikuchi J; Asakura T; Loach PA; Parkes-Loach PS; Shimada K; Hunter CN; Conroy MJ; Williamson MP Biopolymers; 1999 Apr; 49(5):361-72. PubMed ID: 10101971 [TBL] [Abstract][Full Text] [Related]
12. Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. Recchia PA; Davis CM; Lilburn TG; Beatty JT; Parkes-Loach PS; Hunter CN; Loach PA Biochemistry; 1998 Aug; 37(31):11055-63. PubMed ID: 9693001 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled monolayer of light-harvesting core complexes from photosynthetic bacteria on a gold electrode modified with alkanethiols. Kondo M; Nakamura Y; Fujii K; Nagata M; Suemori Y; Dewa T; Iida K; Gardiner AT; Cogdell RJ; Nango M Biomacromolecules; 2007 Aug; 8(8):2457-63. PubMed ID: 17591750 [TBL] [Abstract][Full Text] [Related]
14. Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment. Braun P; Olsen JD; Strohmann B; Hunter CN; Scheer H J Mol Biol; 2002 May; 318(4):1085-95. PubMed ID: 12054804 [TBL] [Abstract][Full Text] [Related]
15. Role of the C-terminal extrinsic region of the alpha polypeptide of the light-harvesting 2 complex of Rhodobacter sphaeroides: a domain swap study. Olsen JD; Robert B; Siebert CA; Bullough PA; Hunter CN Biochemistry; 2003 Dec; 42(51):15114-23. PubMed ID: 14690421 [TBL] [Abstract][Full Text] [Related]
16. The solution structure of Rhodobacter sphaeroides LH1beta reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex. Conroy MJ; Westerhuis WH; Parkes-Loach PS; Loach PA; Hunter CN; Williamson MP J Mol Biol; 2000 Apr; 298(1):83-94. PubMed ID: 10756106 [TBL] [Abstract][Full Text] [Related]
17. ENDOR study of charge migration in photosynthetic arrays of Rhodobacter sphaeroides. Hasjim PL; Lendzian F; Ponomarenko N; Weber S; Norris JR Chemphyschem; 2010 Apr; 11(6):1258-64. PubMed ID: 20340122 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of the Rhodobacter sphaeroides PufX membrane protein: implications for the quinone exchange and protein-protein interactions. Wang ZY; Suzuki H; Kobayashi M; Nozawa T Biochemistry; 2007 Mar; 46(12):3635-42. PubMed ID: 17335288 [TBL] [Abstract][Full Text] [Related]
20. Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Noy D; Dutton PL Biochemistry; 2006 Feb; 45(7):2103-13. PubMed ID: 16475799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]