These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20735086)

  • 1. A microscale platform for integrated cell-free expression and activity screening of cellulases.
    Chandrasekaran A; Bharadwaj R; Park JI; Sapra R; Adams PD; Singh AK
    J Proteome Res; 2010 Nov; 9(11):5677-83. PubMed ID: 20735086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot, microscale cell-free enzyme expression and screening.
    Chandrasekaran A; Singh AK
    Methods Mol Biol; 2014; 1118():55-69. PubMed ID: 24395409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source.
    Kim TW; Chokhawala HA; Nadler DC; Blanch HW; Clark DS
    Biotechnol Bioeng; 2010 Nov; 107(4):601-11. PubMed ID: 20623472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms.
    Ivanen DR; Rongjina NL; Shishlyannikov SM; Litviakova GI; Isaeva-Ivanova LS; Shabalin KA; Kulminskaya AA
    J Microbiol Methods; 2009 Mar; 76(3):295-300. PubMed ID: 19150471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free protein expression and functional assay in nanowell chip format.
    Angenendt P; Nyarsik L; Szaflarski W; Glökler J; Nierhaus KH; Lehrach H; Cahill DJ; Lueking A
    Anal Chem; 2004 Apr; 76(7):1844-9. PubMed ID: 15053642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A specific, robust, and automated method for routine at-line monitoring of the concentration of cellulases in genetically modified sugarcane plants.
    Gupta R; Baldock SJ; Fielden PR; Grieve BD
    Appl Biochem Biotechnol; 2011 Feb; 163(4):528-39. PubMed ID: 21136205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet-based microfluidic platform for heterogeneous enzymatic assays.
    Chang C; Sustarich J; Bharadwaj R; Chandrasekaran A; Adams PD; Singh AK
    Lab Chip; 2013 May; 13(9):1817-22. PubMed ID: 23507976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.
    Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME
    Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium--a new inhibitor of cellulase activities.
    Shultz MD; Lassig JP; Gooch MG; Evans BR; Woodward J
    Biochem Biophys Res Commun; 1995 Apr; 209(3):1046-52. PubMed ID: 7733957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid translation system: a novel cell-free way from gene to protein.
    Hoffmann M; Nemetz C; Madin K; Buchberger B
    Biotechnol Annu Rev; 2004; 10():1-30. PubMed ID: 15504701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry.
    Kim KH; Brown KM; Harris PV; Langston JA; Cherry JR
    J Proteome Res; 2007 Dec; 6(12):4749-57. PubMed ID: 18020405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system.
    Ko KC; Han Y; Cheong DE; Choi JH; Song JJ
    J Microbiol Methods; 2013 Sep; 94(3):311-6. PubMed ID: 23892060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturized fluid array for high-throughput protein expression.
    Khnouf R; Olivero D; Jin S; Fan ZH
    Biotechnol Prog; 2010; 26(6):1590-6. PubMed ID: 20661923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases.
    Feng Y; Duan CJ; Pang H; Mo XC; Wu CF; Yu Y; Hu YL; Wei J; Tang JL; Feng JX
    Appl Microbiol Biotechnol; 2007 May; 75(2):319-28. PubMed ID: 17216439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates.
    Martins LF; Kolling D; Camassola M; Dillon AJ; Ramos LP
    Bioresour Technol; 2008 Mar; 99(5):1417-24. PubMed ID: 17408952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of cellulose using ternary mixtures of purified cellulases.
    Baker JO; Ehrman CI; Adney WS; Thomas SR; Himmel ME
    Appl Biochem Biotechnol; 1998; 70-72():395-403. PubMed ID: 9627391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulases and biofuels.
    Wilson DB
    Curr Opin Biotechnol; 2009 Jun; 20(3):295-9. PubMed ID: 19502046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial beta-glucanases different from cellulases.
    Bielecki S; Galas E
    Crit Rev Biotechnol; 1991; 10(4):275-304. PubMed ID: 1906376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis.
    Wilson DB
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):497-502. PubMed ID: 22113558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.