These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20735118)

  • 21. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical specialization within Arabidopsis RNA silencing pathways.
    Qi Y; Denli AM; Hannon GJ
    Mol Cell; 2005 Aug; 19(3):421-8. PubMed ID: 16061187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical dissection of RNA silencing in plants.
    Tang G; Zamore PD
    Methods Mol Biol; 2004; 257():223-44. PubMed ID: 14770009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis.
    Wu X; Shi Y; Li J; Xu L; Fang Y; Li X; Qi Y
    Cell Res; 2013 May; 23(5):645-57. PubMed ID: 23399598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains of DICER-LIKE1 in nuclear dicing bodies.
    Liu Q; Yan Q; Liu Y; Hong F; Sun Z; Shi L; Huang Y; Fang Y
    Plant Physiol; 2013 Sep; 163(1):108-17. PubMed ID: 23886622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced folding in RNA recognition by Arabidopsis thaliana DCL1.
    Suarez IP; Burdisso P; Benoit MP; Boisbouvier J; Rasia RM
    Nucleic Acids Res; 2015 Jul; 43(13):6607-19. PubMed ID: 26101256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The double-stranded-RNA-binding motif: interference and much more.
    Tian B; Bevilacqua PC; Diegelman-Parente A; Mathews MB
    Nat Rev Mol Cell Biol; 2004 Dec; 5(12):1013-23. PubMed ID: 15573138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa.
    Möller HM; Martinez-Yamout MA; Dyson HJ; Wright PE
    J Mol Biol; 2005 Aug; 351(4):718-30. PubMed ID: 16051273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant science. Viruses face a double defense by plant small RNAs.
    Waterhouse PM; Fusaro AF
    Science; 2006 Jul; 313(5783):54-5. PubMed ID: 16825558
    [No Abstract]   [Full Text] [Related]  

  • 31. [RNA binding proteins in the RNA interference phenomenon].
    Kotel'nikov RN; Shpiz SG; Kalmykova AI; Gvozdev VA
    Mol Biol (Mosk); 2006; 40(4):595-608. PubMed ID: 16913219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
    Chien CY; Xu Y; Xiao R; Aramini JM; Sahasrabudhe PV; Krug RM; Montelione GT
    Biochemistry; 2004 Feb; 43(7):1950-62. PubMed ID: 14967035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.
    Park SJ; Choi SW; Kim GM; Møller C; Pai HS; Yang SW
    Mol Plant; 2021 Apr; 14(4):647-663. PubMed ID: 33524550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1.
    Dong Z; Han MH; Fedoroff N
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9970-5. PubMed ID: 18632569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions of the RNA-binding and linker domains and RNA structure to the specificity and affinity of the nucleolin RBD12/NRE interaction.
    Finger LD; Johansson C; Rinaldi B; Bouvet P; Feigon J
    Biochemistry; 2004 Jun; 43(22):6937-47. PubMed ID: 15170331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-microRNA processing activity in nuclear extracts from Arabidopsis suspension cells.
    Yoshikawa M
    J Plant Res; 2017 Jan; 130(1):75-82. PubMed ID: 27885505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. dsRNA-protein interactions studied by molecular dynamics techniques. Unravelling dsRNA recognition by DCL1.
    Drusin SI; Suarez IP; Gauto DF; Rasia RM; Moreno DM
    Arch Biochem Biophys; 2016 Apr; 596():118-25. PubMed ID: 26987516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing.
    Vazquez F; Gasciolli V; Crété P; Vaucheret H
    Curr Biol; 2004 Feb; 14(4):346-51. PubMed ID: 14972688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of miRNA precursors.
    Kurihara Y; Watanabe Y
    Methods Mol Biol; 2010; 592():231-41. PubMed ID: 19802599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyponastic Leaves 1 Interacts with RNA Pol II to Ensure Proper Transcription of MicroRNA Genes.
    Bielewicz D; Dolata J; Bajczyk M; Szewc L; Gulanicz T; Bhat SS; Karlik A; Jozwiak M; Jarmolowski A; Szweykowska-Kulinska Z
    Plant Cell Physiol; 2023 Jun; 64(6):571-582. PubMed ID: 37040378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.