These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 20735225)
1. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Guerrero S; Araya E; Fiedler JL; Arias JI; Adura C; Albericio F; Giralt E; Arias JL; Fernández MS; Kogan MJ Nanomedicine (Lond); 2010 Aug; 5(6):897-913. PubMed ID: 20735225 [TBL] [Abstract][Full Text] [Related]
2. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Chen YS; Hung YC; Lin WH; Huang GS Nanotechnology; 2010 May; 21(19):195101. PubMed ID: 20400818 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Oishi J; Asami Y; Mori T; Kang JH; Niidome T; Katayama Y Biomacromolecules; 2008 Sep; 9(9):2301-8. PubMed ID: 18680343 [TBL] [Abstract][Full Text] [Related]
4. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Prades R; Guerrero S; Araya E; Molina C; Salas E; Zurita E; Selva J; Egea G; López-Iglesias C; Teixidó M; Kogan MJ; Giralt E Biomaterials; 2012 Oct; 33(29):7194-205. PubMed ID: 22795856 [TBL] [Abstract][Full Text] [Related]
5. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Frigell J; García I; Gómez-Vallejo V; Llop J; Penadés S J Am Chem Soc; 2014 Jan; 136(1):449-57. PubMed ID: 24320878 [TBL] [Abstract][Full Text] [Related]
6. Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Hosta L; Pla-Roca M; Arbiol J; López-Iglesias C; Samitier J; Cruz LJ; Kogan MJ; Albericio F Bioconjug Chem; 2009 Jan; 20(1):138-46. PubMed ID: 19072538 [TBL] [Abstract][Full Text] [Related]
7. Establishment of a trimodality analytical platform for tracing, imaging and quantification of gold nanoparticles in animals by radiotracer techniques. Chen CH; Lin FS; Liao WN; Liang SL; Chen MH; Chen YW; Lin WY; Hsu MH; Wang MY; Peir JJ; Chou FI; Chen CY; Chen SY; Huang SC; Yang MH; Hueng DY; Hwu Y; Yang CS; Chen JK Anal Chem; 2015 Jan; 87(1):601-8. PubMed ID: 25424326 [TBL] [Abstract][Full Text] [Related]
8. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575 [TBL] [Abstract][Full Text] [Related]
9. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Chen YS; Hung YC; Lin LW; Liau I; Hong MY; Huang GS Nanotechnology; 2010 Dec; 21(48):485102. PubMed ID: 21051801 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Ferreira GK; Cardoso E; Vuolo FS; Michels M; Zanoni ET; Carvalho-Silva M; Gomes LM; Dal-Pizzol F; Rezin GT; Streck EL; Paula MM Biochem Cell Biol; 2015 Dec; 93(6):548-57. PubMed ID: 26583437 [TBL] [Abstract][Full Text] [Related]
11. Pharmacokinetics, tissue distribution and safety of gold nanoparticle/PKC Delta inhibitor peptide hybrid in rats. Konoeda H; Takizawa H; Gower A; Zhao M; Adeyi OA; Liu M Nanotoxicology; 2020 Apr; 14(3):341-354. PubMed ID: 31852291 [TBL] [Abstract][Full Text] [Related]
12. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943 [TBL] [Abstract][Full Text] [Related]
13. Effect of surface oxidation on the interaction of 1-methylaminopyrene with gold nanoparticles. Zhang J; Riabinina D; Chaker M; Ma D Langmuir; 2012 Feb; 28(5):2858-65. PubMed ID: 22214268 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Lee CH; Syu SH; Chen YS; Hussain SM; Aleksandrovich Onischuk A; Chen WL; Steven Huang G Nanotechnology; 2014 Mar; 25(12):125103. PubMed ID: 24576992 [TBL] [Abstract][Full Text] [Related]
15. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. Tsai CY; Lu SL; Hu CW; Yeh CS; Lee GB; Lei HY J Immunol; 2012 Jan; 188(1):68-76. PubMed ID: 22156340 [TBL] [Abstract][Full Text] [Related]
16. Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. Hao F; Jin X; Liu QS; Zhou Q; Jiang G ACS Appl Mater Interfaces; 2017 Dec; 9(49):42577-42588. PubMed ID: 29148696 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Guerrero S; Herance JR; Rojas S; Mena JF; Gispert JD; Acosta GA; Albericio F; Kogan MJ Bioconjug Chem; 2012 Mar; 23(3):399-408. PubMed ID: 22284226 [TBL] [Abstract][Full Text] [Related]
19. Influence of gold nanoparticles of varying size in improving the lipase activity within cationic reverse micelles. Maiti S; Das D; Shome A; Das PK Chemistry; 2010 Feb; 16(6):1941-50. PubMed ID: 20013961 [TBL] [Abstract][Full Text] [Related]
20. The preparation of gold nanoparticles and evaluation of their immunological function effects on rats. Wang YT; Lu XM; Zhu F; Zhao M Biomed Mater Eng; 2014; 24(1):885-92. PubMed ID: 24211976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]