These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20735255)

  • 1. An experimental investigation of the evolution of chirality in a potential dynamic peptide system: N-terminal epimerization and degradation into diketopiperazine.
    Danger G; Plasson R; Pascal R
    Astrobiology; 2010; 10(6):651-62. PubMed ID: 20735255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homochirality in an early peptide world.
    Brandenburg A; Lehto HJ; Lehto KM
    Astrobiology; 2007 Oct; 7(5):725-32. PubMed ID: 17963472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward homochiral protocells in noncatalytic peptide systems.
    Gleiser M; Walker SI
    Orig Life Evol Biosph; 2009 Oct; 39(5):479-93. PubMed ID: 19370399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of artificial peptide self-replication. Part II: the heterochiral case.
    Islas JR; Pimienta V; Micheau JC; Buhse T
    Biophys Chem; 2003 Mar; 103(3):201-11. PubMed ID: 12727283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of alanylalanine diastereoisomers in neutral and acid aqueous solutions: a versatile stereoselectivity.
    Plasson R; Tsuji M; Kamata M; Asakura K
    Orig Life Evol Biosph; 2011 Oct; 41(5):413-35. PubMed ID: 21562847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth.
    Konstantinov KK; Konstantinova AF
    Orig Life Evol Biosph; 2018 Mar; 48(1):93-122. PubMed ID: 29119380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of homochirality by epimerization of random peptide chains. A stochastic model.
    Schmidt P
    Orig Life Evol Biosph; 2006 Aug; 36(4):391-411. PubMed ID: 16791733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry breaking and chiral amplification in prebiotic ligation reactions.
    Deng M; Yu J; Blackmond DG
    Nature; 2024 Feb; 626(8001):1019-1024. PubMed ID: 38418914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of ground-state chiral induction in small peptides: comparison of the relative stability of selected amino acid dimers and oligomers in homochiral and heterochiral combinations.
    Zhou Y; Oostenbrink C; Jongejan A; Van Gunsteren WF; Hagen WR; De Leeuw SW; Jongejan JA
    J Comput Chem; 2006 May; 27(7):857-67. PubMed ID: 16541426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epimerization of Alanyl-Alanine Induced by γ-Rays Irradiation in Aqueous Solutions.
    Munegumi T
    Orig Life Evol Biosph; 2017 Mar; 47(1):69-82. PubMed ID: 27245350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated evolution of emergent chiral structures in polyalanine.
    Nanda V; Degrado WF
    J Am Chem Soc; 2004 Nov; 126(44):14459-67. PubMed ID: 15521766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Viedma deracemization of racemic conglomerate mixtures as a paradigm of spontaneous mirror symmetry breaking in aggregation and polymerization.
    Blanco C; Crusats J; El-Hachemi Z; Moyano A; Veintemillas-Verdaguer S; Hochberg D; Ribó JM
    Chemphyschem; 2013 Dec; 14(17):3982-93. PubMed ID: 24288286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of artificial peptide self-replication. Part I: the homochiral case.
    Islas JR; Pimienta V; Micheau JC; Buhse T
    Biophys Chem; 2003 Mar; 103(3):191-200. PubMed ID: 12727282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chiroselective peptide replicator.
    Saghatelian A; Yokobayashi Y; Soltani K; Ghadiri MR
    Nature; 2001 Feb; 409(6822):797-801. PubMed ID: 11236988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prebiotic formation of cyclic dipeptides under potentially early Earth conditions.
    Ying J; Lin R; Xu P; Wu Y; Liu Y; Zhao Y
    Sci Rep; 2018 Jan; 8(1):936. PubMed ID: 29343792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation kinetics of an aspartyl-tripeptide-derived diketopiperazine under forced conditions.
    Brückner C; Fahr A; Imhof D; Scriba GK
    J Pharm Sci; 2012 Nov; 101(11):4178-90. PubMed ID: 22899465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Activation of Free Dipeptides Promoted by Strong Activating Agents in Water Does not Yield Diketopiperazines.
    Beaufils D; Jepaul S; Liu Z; Boiteau L; Pascal R
    Orig Life Evol Biosph; 2016 Mar; 46(1):19-30. PubMed ID: 26205652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IR action spectroscopy shows competitive oxazolone and diketopiperazine formation in peptides depends on peptide length and identity of terminal residue in the departing fragment.
    Morrison LJ; Chamot-Rooke J; Wysocki VH
    Analyst; 2014 May; 139(9):2137-43. PubMed ID: 24618890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous emergence of chirality in the limited enantioselectivity model: autocatalytic cycle driven by an external reagent.
    Blanco C; Crusats J; El-Hachemi Z; Moyano A; Hochberg D; Ribó JM
    Chemphyschem; 2013 Aug; 14(11):2432-40. PubMed ID: 23821539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin.
    Schultz AW; Oh DC; Carney JR; Williamson RT; Udwary DW; Jensen PR; Gould SJ; Fenical W; Moore BS
    J Am Chem Soc; 2008 Apr; 130(13):4507-16. PubMed ID: 18331040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.