These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20735339)

  • 1. Multilinear models of single cell responses in the medial nucleus of the trapezoid body.
    Englitz B; Ahrens M; Tolnai S; Rübsamen R; Sahani M; Jost J
    Network; 2010; 21(1-2):91-124. PubMed ID: 20735339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic coupling of excitatory and inhibitory responses in the medial nucleus of the trapezoid body.
    Tolnai S; Englitz B; Kopp-Scheinpflug C; Dehmel S; Jost J; Rübsamen R
    Eur J Neurosci; 2008 Jun; 27(12):3191-204. PubMed ID: 18598262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units.
    Tolnai S; Hernandez O; Englitz B; Rübsamen R; Malmierca MS
    Eur J Neurosci; 2008 May; 27(10):2587-98. PubMed ID: 18547245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiking neurons learning phase delays: how mammals may develop auditory time-difference sensitivity.
    Leibold C; van Hemmen JL
    Phys Rev Lett; 2005 Apr; 94(16):168102. PubMed ID: 15904267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding.
    Kadner A; Kulesza RJ; Berrebi AS
    J Neurophysiol; 2006 Mar; 95(3):1499-508. PubMed ID: 16319207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR; Moore DR; Rubel EW
    J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The medial nucleus of the trapezoid body in the gerbil is more than a relay: comparison of pre- and postsynaptic activity.
    Kopp-Scheinpflug C; Lippe WR; Dörrscheidt GJ; Rübsamen R
    J Assoc Res Otolaryngol; 2003 Mar; 4(1):1-23. PubMed ID: 12098017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain adjustment of inhibitory synapses in the auditory system.
    Kotak VC; Sanes DH
    Biol Cybern; 2003 Nov; 89(5):363-70. PubMed ID: 14669016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory response properties in the superior paraolivary nucleus of the gerbil.
    Behrend O; Brand A; Kapfer C; Grothe B
    J Neurophysiol; 2002 Jun; 87(6):2915-28. PubMed ID: 12037195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways.
    Burger RM; Cramer KS; Pfeiffer JD; Rubel EW
    J Comp Neurol; 2005 Jan; 481(1):6-18. PubMed ID: 15558730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike transmission delay at the calyx of Held in vivo: rate dependence, phenomenological modeling, and relevance for sound localization.
    Tolnai S; Englitz B; Scholbach J; Jost J; Rübsamen R
    J Neurophysiol; 2009 Aug; 102(2):1206-17. PubMed ID: 19515955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice.
    Leao RN; Svahn K; Berntson A; Walmsley B
    Eur J Neurosci; 2005 Jul; 22(1):147-57. PubMed ID: 16029204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness.
    Müller NIC; Paulußen I; Hofmann LN; Fisch JO; Singh A; Friauf E
    J Physiol; 2022 May; 600(10):2461-2497. PubMed ID: 35439328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective filtering to spurious localization cues in the mammalian auditory brainstem.
    Meffin H; Grothe B
    J Acoust Soc Am; 2009 Nov; 126(5):2437-54. PubMed ID: 19894825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings.
    Roberts MT; Seeman SC; Golding NL
    Front Neural Circuits; 2014; 8():49. PubMed ID: 24860434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.