BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20735435)

  • 1. Oxidative DNA damage and reporter gene mutation in the livers of gpt delta rats given non-genotoxic hepatocarcinogens with cytochrome P450-inducible potency.
    Tasaki M; Umemura T; Suzuki Y; Hibi D; Inoue T; Okamura T; Ishii Y; Maruyama S; Nohmi T; Nishikawa A
    Cancer Sci; 2010 Dec; 101(12):2525-30. PubMed ID: 20735435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative DNA damage and in vivo mutagenicity caused by reactive oxygen species generated in the livers of p53-proficient or -deficient gpt delta mice treated with non-genotoxic hepatocarcinogens.
    Tasaki M; Kuroiwa Y; Inoue T; Hibi D; Matsushita K; Ishii Y; Maruyama S; Nohmi T; Nishikawa A; Umemura T
    J Appl Toxicol; 2013 Dec; 33(12):1433-41. PubMed ID: 22972318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21(WAF1/Cip1), cyclin D1 and Ogg1.
    Kinoshita A; Wanibuchi H; Imaoka S; Ogawa M; Masuda C; Morimura K; Funae Y; Fukushima S
    Carcinogenesis; 2002 Feb; 23(2):341-9. PubMed ID: 11872643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular pathological analysis for determining the possible mechanism of piperonyl butoxide-induced hepatocarcinogenesis in mice.
    Muguruma M; Nishimura J; Jin M; Kashida Y; Moto M; Takahashi M; Yokouchi Y; Mitsumori K
    Toxicology; 2006 Dec; 228(2-3):178-87. PubMed ID: 17014948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats.
    Muguruma M; Unami A; Kanki M; Kuroiwa Y; Nishimura J; Dewa Y; Umemura T; Oishi Y; Mitsumori K
    Toxicology; 2007 Jul; 236(1-2):61-75. PubMed ID: 17498859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive toxicity study of safrole using a medium-term animal model with gpt delta rats.
    Jin M; Kijima A; Suzuki Y; Hibi D; Inoue T; Ishii Y; Nohmi T; Nishikawa A; Ogawa K; Umemura T
    Toxicology; 2011 Dec; 290(2-3):312-21. PubMed ID: 22024337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo mutagenicity of arsenite in the livers of gpt delta transgenic mice.
    Takumi S; Aoki Y; Sano T; Suzuki T; Nohmi T; Nohara K
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Jan; 760():42-7. PubMed ID: 24333349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-carbinol enhances oxidative stress responses resulting in the induction of preneoplastic liver cell lesions in partially hepatectomized rats initiated with diethylnitrosamine.
    Shimamoto K; Dewa Y; Ishii Y; Kemmochi S; Taniai E; Hayashi H; Imaoka M; Morita R; Kuwata K; Suzuki K; Shibutani M; Mitsumori K
    Toxicology; 2011 May; 283(2-3):109-17. PubMed ID: 21396975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement and validation of a medium-term gpt delta rat model for predicting chemical carcinogenicity and underlying mode of action.
    Matsushita K; Kuroda K; Ishii Y; Takasu S; Kijima A; Kawaguchi H; Miyoshi N; Nohmi T; Ogawa K; Nishikawa A; Umemura T
    Exp Toxicol Pathol; 2014 Sep; 66(7):313-21. PubMed ID: 24929978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of genotoxic mechanisms in early-stage furan-induced hepatocellular tumorigenesis in gpt delta rats.
    Hibi D; Yokoo Y; Suzuki Y; Ishii Y; Jin M; Kijima A; Nohmi T; Nishikawa A; Umemura T
    J Appl Toxicol; 2017 Feb; 37(2):142-149. PubMed ID: 27143483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo mutagenicity and initiation following oxidative DNA lesion in the kidneys of rats given potassium bromate.
    Umemura T; Kanki K; Kuroiwa Y; Ishii Y; Okano K; Nohmi T; Nishikawa A; Hirose M
    Cancer Sci; 2006 Sep; 97(9):829-35. PubMed ID: 16805826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of oxidative DNA damage, cell proliferation and in vivo mutagenicity induced by dicyclanil, a non-genotoxic carcinogen, using gpt delta mice.
    Umemura T; Kuroiwa Y; Tasaki M; Okamura T; Ishii Y; Kodama Y; Nohmi T; Mitsumori K; Nishikawa A; Hirose M
    Mutat Res; 2007 Sep; 633(1):46-54. PubMed ID: 17581771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical structure-related mechanisms underlying in vivo genotoxicity induced by nitrofurantoin and its constituent moieties in gpt delta rats.
    Kijima A; Ishii Y; Takasu S; Matsushita K; Kuroda K; Hibi D; Suzuki Y; Nohmi T; Umemura T
    Toxicology; 2015 May; 331():125-35. PubMed ID: 25772432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoting effects of monomethylarsonic acid, dimethylarsinic acid and trimethylarsine oxide on induction of rat liver preneoplastic glutathione S-transferase placental form positive foci: a possible reactive oxygen species mechanism.
    Nishikawa T; Wanibuchi H; Ogawa M; Kinoshita A; Morimura K; Hiroi T; Funae Y; Kishida H; Nakae D; Fukushima S
    Int J Cancer; 2002 Jul; 100(2):136-9. PubMed ID: 12115560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold dose of piperonyl butoxide that induces reactive oxygen species-mediated hepatocarcinogenesis in rats.
    Muguruma M; Kawai M; Dewa Y; Nishimura J; Saegusa Y; Yasuno H; Jin M; Matsumoto S; Takabatake M; Arai K; Mitsumori K
    Arch Toxicol; 2009 Feb; 83(2):183-93. PubMed ID: 18648771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenobarbital at low dose exerts hormesis in rat hepatocarcinogenesis by reducing oxidative DNA damage, altering cell proliferation, apoptosis and gene expression.
    Kinoshita A; Wanibuchi H; Morimura K; Wei M; Shen J; Imaoka S; Funae Y; Fukushima S
    Carcinogenesis; 2003 Aug; 24(8):1389-99. PubMed ID: 12807726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of piperonyl butoxide on cell replication and xenobiotic metabolism in the livers of CD-1 mice and F344 rats.
    Phillips JC; Price RJ; Cunninghame ME; Osimitz TG; Cockburn A; Gabriel KL; Preiss FJ; Butler WH; Lake BG
    Fundam Appl Toxicol; 1997 Jul; 38(1):64-74. PubMed ID: 9268606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressive effect of liver tumor-promoting activities in rats subjected to combined administration of phenobarbital and piperonyl butoxide.
    Morita R; Yafune A; Shiraki A; Itahashi M; Akane H; Nakane F; Suzuki K; Shibutani M; Mitsumori K
    J Toxicol Sci; 2013; 38(5):679-88. PubMed ID: 24025784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevation of cell proliferation via generation of reactive oxygen species by piperonyl butoxide contributes to its liver tumor-promoting effects in mice.
    Kawai M; Saegusa Y; Dewa Y; Nishimura J; Kemmochi S; Harada T; Ishii Y; Umemura T; Shibutani M; Mitsumori K
    Arch Toxicol; 2010 Feb; 84(2):155-64. PubMed ID: 20101389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance.
    Lake BG; Price RJ; Scott MP; Chatham LR; Vardy A; Osimitz TG
    Toxicology; 2020 Jun; 439():152465. PubMed ID: 32320717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.