BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20736083)

  • 1. Repercussion of a deficiency in mitochondrial ß-oxidation on the carbon flux of short-chain fatty acids to the peroxisomal ß-oxidation cycle in Aspergillus nidulans.
    Magliano P; Sanglard D; Poirier Y
    Biochim Biophys Acta; 2010 Dec; 1801(12):1386-92. PubMed ID: 20736083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial beta-oxidation in Aspergillus nidulans.
    Maggio-Hall LA; Keller NP
    Mol Microbiol; 2004 Dec; 54(5):1173-85. PubMed ID: 15554960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans.
    Maggio-Hall LA; Lyne P; Wolff JA; Keller NP
    Fungal Genet Biol; 2008 Mar; 45(3):180-9. PubMed ID: 17656140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae.
    Marchesini S; Poirier Y
    J Biol Chem; 2003 Aug; 278(35):32596-601. PubMed ID: 12819196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AoxA is a major peroxisomal long chain fatty acyl-CoA oxidase required for beta-oxidation in A. nidulans.
    Reiser K; Davis MA; Hynes MJ
    Curr Genet; 2010 Apr; 56(2):139-50. PubMed ID: 20043225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans.
    Hynes MJ; Murray SL; Khew GS; Davis MA
    Genetics; 2008 Mar; 178(3):1355-69. PubMed ID: 18245820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.
    Maeda I; Delessert S; Hasegawa S; Seto Y; Zuber S; Poirier Y
    J Biol Chem; 2006 Apr; 281(17):11729-35. PubMed ID: 16490786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.
    Mittendorf V; Bongcam V; Allenbach L; Coullerez G; Martini N; Poirier Y
    Plant J; 1999 Oct; 20(1):45-55. PubMed ID: 10571864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fox2-dependent fatty acid ß-oxidation pathway coexists both in peroxisomes and mitochondria of the ascomycete yeast Candida lusitaniae.
    Gabriel F; Accoceberry I; Bessoule JJ; Salin B; Lucas-Guérin M; Manon S; Dementhon K; Noël T
    PLoS One; 2014; 9(12):e114531. PubMed ID: 25486052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the beta-oxidation of trans-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway.
    Robert J; Marchesini S; Delessert S; Poirier Y
    Biochim Biophys Acta; 2005 May; 1734(2):169-77. PubMed ID: 15904873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.
    Reddy JK; Hashimoto T
    Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation.
    Poirier Y; Erard N; Petétot JM
    Appl Environ Microbiol; 2001 Nov; 67(11):5254-60. PubMed ID: 11679353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal ABC transporters and beta-oxidation during the life cycle of the filamentous fungus Podospora anserina.
    Boisnard S; Espagne E; Zickler D; Bourdais A; Riquet AL; Berteaux-Lecellier V
    Fungal Genet Biol; 2009 Jan; 46(1):55-66. PubMed ID: 18992353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans.
    Hynes MJ; Murray SL; Duncan A; Khew GS; Davis MA
    Eukaryot Cell; 2006 May; 5(5):794-805. PubMed ID: 16682457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein.
    Haddouche R; Poirier Y; Delessert S; Sabirova J; Pagot Y; Neuvéglise C; Nicaud JM
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1327-40. PubMed ID: 21603933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.
    Piekarska K; Mol E; van den Berg M; Hardy G; van den Burg J; van Roermund C; MacCallum D; Odds F; Distel B
    Eukaryot Cell; 2006 Nov; 5(11):1847-56. PubMed ID: 16963628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Peroxisomal beta-oxidation].
    Mannaerts GP; Van Veldhoven PP
    Verh K Acad Geneeskd Belg; 1993; 55(1):45-78. PubMed ID: 8480447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of peroxisomal beta-oxidation and fatty acid elongation in HepG2 cells.
    Wong DA; Bassilian S; Lim S; Paul Lee WN
    J Biol Chem; 2004 Oct; 279(40):41302-9. PubMed ID: 15277519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.
    Violante S; Achetib N; van Roermund CWT; Hagen J; Dodatko T; Vaz FM; Waterham HR; Chen H; Baes M; Yu C; Argmann CA; Houten SM
    FASEB J; 2019 Mar; 33(3):4355-4364. PubMed ID: 30540494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans.
    Valenciano S; Lucas JR; Pedregosa A; Monistrol IF; Laborda F
    Arch Microbiol; 1996 Nov; 166(5):336-41. PubMed ID: 8929280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.