BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20736314)

  • 1. Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains.
    Low JT; Shukla A; Behrendorff N; Thorn P
    J Cell Sci; 2010 Sep; 123(Pt 18):3201-8. PubMed ID: 20736314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium regulates exocytosis at the level of single vesicles.
    Becherer U; Moser T; Stühmer W; Oheim M
    Nat Neurosci; 2003 Aug; 6(8):846-53. PubMed ID: 12845327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrophil elastase promotes rapid exocytosis in human airway gland cells by producing cytosolic Ca2+ oscillations.
    Maizieres M; Kaplan H; Millot JM; Bonnet N; Manfait M; Puchelle E; Jacquot J
    Am J Respir Cell Mol Biol; 1998 Jan; 18(1):32-42. PubMed ID: 9448043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-second quenched-flow/X-ray microanalysis shows rapid Ca2+ mobilization from cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells.
    Hardt M; Plattner H
    Eur J Cell Biol; 2000 Sep; 79(9):642-52. PubMed ID: 11043405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular processes associated with vesicular transport from endoplasmic reticulum to Golgi and exocytosis: ethanol-induced changes in membrane biogenesis.
    Slomiany A; Grabska M; Piotrowski E; Sengupta S; Morita M; Kasinathan C; Slomiany BL
    Arch Biochem Biophys; 1994 Apr; 310(1):247-55. PubMed ID: 8161212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
    Shankar VS; Bax CM; Bax BE; Alam AS; Moonga BS; Simon B; Pazianas M; Huang CL; Zaidi M
    J Cell Physiol; 1993 Apr; 155(1):120-9. PubMed ID: 8385675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of zymogen granule exocytosis by Ca2+, cAMP, and PKC in pancreatic acinar cells.
    Lee M; Chung S; Uhm DY; Park MK
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1241-7. PubMed ID: 16040001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein.
    Grishanin RN; Kowalchyk JA; Klenchin VA; Ann K; Earles CA; Chapman ER; Gerona RR; Martin TF
    Neuron; 2004 Aug; 43(4):551-62. PubMed ID: 15312653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion.
    Churchward MA; Rogasevskaia T; Höfgen J; Bau J; Coorssen JR
    J Cell Sci; 2005 Oct; 118(Pt 20):4833-48. PubMed ID: 16219690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium.
    Satir BH; Busch G; Vuoso A; Murtaugh TJ
    J Cell Biochem; 1988 Apr; 36(4):429-43. PubMed ID: 2454239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M; Clark CL; Powis DA
    Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acrosomal vesicle of mouse sperm is a calcium store.
    Herrick SB; Schweissinger DL; Kim SW; Bayan KR; Mann S; Cardullo RA
    J Cell Physiol; 2005 Mar; 202(3):663-71. PubMed ID: 15389568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic diversity in the fusion of exocytotic vesicles.
    Ninomiya Y; Kishimoto T; Yamazawa T; Ikeda H; Miyashita Y; Kasai H
    EMBO J; 1997 Mar; 16(5):929-34. PubMed ID: 9118954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse.
    Beaumont V; Llobet A; Lagnado L
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10700-5. PubMed ID: 16027365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs.
    Tse FW; Tse A; Hille B; Horstmann H; Almers W
    Neuron; 1997 Jan; 18(1):121-32. PubMed ID: 9010210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial exocytotic system that secretes intravesicular contents upon Ca2+ influx.
    Sasai M; Tadokoro S; Hirashima N
    Langmuir; 2010 Sep; 26(18):14788-92. PubMed ID: 20722459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling mechanisms of cell secretion.
    Tsaneva-Atanasova K; Osinga HM; Tabak J; Pedersen MG
    Acta Biotheor; 2010 Dec; 58(4):315-27. PubMed ID: 20661627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage.
    Tsvilovskyy V; Ottenheijm R; Kriebs U; Schütz A; Diakopoulos KN; Jha A; Bildl W; Wirth A; Böck J; Jaślan D; Ferro I; Taberner FJ; Kalinina O; Hildebrand S; Wissenbach U; Weissgerber P; Vogt D; Eberhagen C; Mannebach S; Berlin M; Kuryshev V; Schumacher D; Philippaert K; Camacho-Londoño JE; Mathar I; Dieterich C; Klugbauer N; Biel M; Wahl-Schott C; Lipp P; Flockerzi V; Zischka H; Algül H; Lechner SG; Lesina M; Grimm C; Fakler B; Schulte U; Muallem S; Freichel M
    J Clin Invest; 2024 Apr; 134(7):. PubMed ID: 38557489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.