BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20736890)

  • 1. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model.
    Barbir A; Godburn KE; Michalek AJ; Lai A; Monsey RD; Iatridis JC
    Spine (Phila Pa 1976); 2011 Apr; 36(8):607-14. PubMed ID: 20736890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologic response of the intervertebral disc to static and dynamic compression in vitro.
    Wang DL; Jiang SD; Dai LY
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2521-8. PubMed ID: 17978649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc.
    Elliott DM; Sarver JJ
    Spine (Phila Pa 1976); 2004 Apr; 29(7):713-22. PubMed ID: 15087791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.
    Espinoza Orías AA; Malhotra NR; Elliott DM
    Spine J; 2009 Mar; 9(3):204-9. PubMed ID: 18495544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression.
    Wuertz K; Godburn K; MacLean JJ; Barbir A; Donnelly JS; Roughley PJ; Alini M; Iatridis JC
    J Orthop Res; 2009 Sep; 27(9):1235-42. PubMed ID: 19274755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Static Compression Loads on Intervertebral Disc: An in Vivo Bent Rat Tail Model.
    Xia W; Zhang LL; Mo J; Zhang W; Li HT; Luo ZP; Yang HL
    Orthop Surg; 2018 May; 10(2):134-143. PubMed ID: 29770581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Height and torsional stiffness are most sensitive to annular injury in large animal intervertebral discs.
    Michalek AJ; Iatridis JC
    Spine J; 2012 May; 12(5):425-32. PubMed ID: 22627276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of adiponectin receptors in human and rat intervertebral disc cells and changes in receptor expression during disc degeneration using a rat tail temporary static compression model.
    Terashima Y; Kakutani K; Yurube T; Takada T; Maeno K; Hirata H; Miyazaki S; Ito M; Kakiuchi Y; Takeoka Y; Kuroda R; Nishida K
    J Orthop Surg Res; 2016 Nov; 11(1):147. PubMed ID: 27876065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of static compression with different loading magnitudes and durations on the intervertebral disc: an in vivo rat-tail study.
    Lai A; Chow DH; Siu SW; Leung SS; Lau EF; Tang FH; Pope MH
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2721-7. PubMed ID: 19050577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model.
    Ching CT; Chow DH; Yao FY; Holmes AD
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):182-9. PubMed ID: 12620780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model.
    Ching CT; Chow DH; Yao FY; Holmes AD
    Med Eng Phys; 2004 Sep; 26(7):587-94. PubMed ID: 15271286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study.
    Lotz JC; Colliou OK; Chin JR; Duncan NA; Liebenberg E
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2493-506. PubMed ID: 9854748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.
    Bezci SE; Klineberg EO; O'Connell GD
    J Mech Behav Biomed Mater; 2018 Jan; 77():353-359. PubMed ID: 28965042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor.
    Chan SC; Walser J; Käppeli P; Shamsollahi MJ; Ferguson SJ; Gantenbein-Ritter B
    PLoS One; 2013; 8(8):e72489. PubMed ID: 24013824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro torsion-induced stress distribution changes in porcine intervertebral discs.
    van Deursen DL; Snijders CJ; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2001 Dec; 26(23):2582-6. PubMed ID: 11725239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of enzymatic digestion on compressive properties of rat intervertebral discs.
    Barbir A; Michalek AJ; Abbott RD; Iatridis JC
    J Biomech; 2010 Apr; 43(6):1067-73. PubMed ID: 20116063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo.
    MacLean JJ; Lee CR; Grad S; Ito K; Alini M; Iatridis JC
    Spine (Phila Pa 1976); 2003 May; 28(10):973-81. PubMed ID: 12768134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanobiology of the intervertebral disc.
    Lotz JC; Hsieh AH; Walsh AL; Palmer EI; Chin JR
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):853-8. PubMed ID: 12440932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.