These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20736914)

  • 1. Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels.
    Cretu A; Castagnino P; Assoian R
    J Vis Exp; 2010 Aug; (42):. PubMed ID: 20736914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of hydrogel substrates with tunable mechanical properties.
    Tse JR; Engler AJ
    Curr Protoc Cell Biol; 2010 Jun; Chapter 10():Unit 10.16. PubMed ID: 20521229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response.
    Sunyer R; Jin AJ; Nossal R; Sackett DL
    PLoS One; 2012; 7(10):e46107. PubMed ID: 23056241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability.
    Woods K; Thigpen C; Wang JP; Park H; Hielscher A
    BMC Cell Biol; 2017 Dec; 18(1):35. PubMed ID: 29246104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro.
    Matsuzaki S; Canis M; Pouly JL; Darcha C
    Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.
    Diederich VE; Studer P; Kern A; Lattuada M; Storti G; Sharma RI; Snedeker JG; Morbidelli M
    Biotechnol Bioeng; 2013 May; 110(5):1508-19. PubMed ID: 23243007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing Fe(III)-Carboxylate Photochemistry for Radical-Initiated Polymerization in Hydrogels.
    Karunarathna MHJS; Linhart AN; Giammanco GE; Norton AE; Chory JJ; Keleher JJ; Ostrowski AD
    ACS Appl Bio Mater; 2021 Jul; 4(7):5765-5775. PubMed ID: 35006746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized Enzyme-Responsive Biomaterials to Model Tissue Stiffening
    Tirella A; Mattei G; La Marca M; Ahluwalia A; Tirelli N
    Front Bioeng Biotechnol; 2020; 8():208. PubMed ID: 32322576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells.
    Zhang YH; Zhao CQ; Jiang LS; Dai LY
    Matrix Biol; 2011 Mar; 30(2):135-44. PubMed ID: 21055467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Polyacrylamide Hydrogels to Study the Effects of Matrix Stiffness on Nuclear Envelope Properties.
    Minaisah RM; Cox S; Warren DT
    Methods Mol Biol; 2016; 1411():233-9. PubMed ID: 27147046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabrication of poly(acrylamide) hydrogels with independently controlled topography and stiffness.
    Comelles J; Fernández-Majada V; Berlanga-Navarro N; Acevedo V; Paszkowska K; Martínez E
    Biofabrication; 2020 Mar; 12(2):025023. PubMed ID: 32050182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft PEG-Hydrogels with Independently Tunable Stiffness and RGDS-Content for Cell Adhesion Studies.
    M Jonker A; A Bode S; H Kusters A; van Hest JC; Löwik DW
    Macromol Biosci; 2015 Oct; 15(10):1338-47. PubMed ID: 26097013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels.
    Hadden WJ; Young JL; Holle AW; McFetridge ML; Kim DY; Wijesinghe P; Taylor-Weiner H; Wen JH; Lee AR; Bieback K; Vo BN; Sampson DD; Kennedy BF; Spatz JP; Engler AJ; Choi YS
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5647-5652. PubMed ID: 28507138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Matrix Stiffness on Human Hepatocyte Migration and Function-An In Vitro Research.
    Xia T; Zhao R; Feng F; Yang L
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32846973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness.
    Puckert C; Tomaskovic-Crook E; Gambhir S; Wallace GG; Crook JM; Higgins MJ
    Acta Biomater; 2020 Apr; 106():156-169. PubMed ID: 32084598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.
    Vichare S; Sen S; Inamdar MM
    Soft Matter; 2014 Feb; 10(8):1174-81. PubMed ID: 24651595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.