These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 20737470)
1. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls. Cardadeiro G; Baptista F; Zymbal V; Rodrigues LA; Sardinha LB J Bone Miner Res; 2010 Nov; 25(11):2304-12. PubMed ID: 20737470 [TBL] [Abstract][Full Text] [Related]
2. Objectively measured physical activity and bone strength in 9-year-old boys and girls. Sardinha LB; Baptista F; Ekelund U Pediatrics; 2008 Sep; 122(3):e728-36. PubMed ID: 18762509 [TBL] [Abstract][Full Text] [Related]
3. DXA femoral neck strength analysis in Chinese overweight and normal weight adolescents. Gong J; Xu Y; Guo B; Xu H J Clin Densitom; 2012; 15(2):146-51. PubMed ID: 22402117 [TBL] [Abstract][Full Text] [Related]
4. Influence of physical activity and skeleton geometry on bone mass at the proximal femur in 10- to 12-year-old children--a longitudinal study. Cardadeiro G; Baptista F; Rosati N; Zymbal V; Janz KF; Sardinha LB Osteoporos Int; 2014 Aug; 25(8):2035-45. PubMed ID: 24809809 [TBL] [Abstract][Full Text] [Related]
5. Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Janz KF; Gilmore JM; Levy SM; Letuchy EM; Burns TL; Beck TJ Bone; 2007 Aug; 41(2):216-22. PubMed ID: 17560839 [TBL] [Abstract][Full Text] [Related]
6. Sex specific association of physical activity on proximal femur BMD in 9 to 10 year-old children. Cardadeiro G; Baptista F; Ornelas R; Janz KF; Sardinha LB PLoS One; 2012; 7(11):e50657. PubMed ID: 23209801 [TBL] [Abstract][Full Text] [Related]
7. Determinants of bone mass in 10- to 26-year-old females: a twin study. Young D; Hopper JL; Nowson CA; Green RM; Sherwin AJ; Kaymakci B; Smid M; Guest CS; Larkins RG; Wark JD J Bone Miner Res; 1995 Apr; 10(4):558-67. PubMed ID: 7610926 [TBL] [Abstract][Full Text] [Related]
8. A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Gregory JS; Testi D; Stewart A; Undrill PE; Reid DM; Aspden RM Osteoporos Int; 2004 Jan; 15(1):5-11. PubMed ID: 14605797 [TBL] [Abstract][Full Text] [Related]
9. Association of body composition and physical activity with proximal femur geometry in middle-aged and elderly Afro-Caribbean men: the Tobago bone health study. Semanick LM; Beck TJ; Cauley JA; Wheeler VW; Patrick AL; Bunker CH; Zmuda JM Calcif Tissue Int; 2005 Sep; 77(3):160-6. PubMed ID: 16151673 [TBL] [Abstract][Full Text] [Related]
10. An evaluation of sex and body weight determination from the proximal femur using DXA technology and its potential for forensic anthropology. Wheatley BP Forensic Sci Int; 2005 Jan; 147(2-3):141-5. PubMed ID: 15567618 [TBL] [Abstract][Full Text] [Related]
11. Bone mass in children: normative values for the 2-20-year-old population. Zanchetta JR; Plotkin H; Alvarez Filgueira ML Bone; 1995 Apr; 16(4 Suppl):393S-399S. PubMed ID: 7626329 [TBL] [Abstract][Full Text] [Related]
12. Prediction of bone mineral density of lumbar spine, hip, femoral neck and Ward's triangle by forearm bone mineral density. Trivitayaratana W; Trivitayaratana P; Kongkiatikul S J Med Assoc Thai; 2001 Mar; 84(3):390-6. PubMed ID: 11460941 [TBL] [Abstract][Full Text] [Related]
13. Impact of detraining on bone loss in former collegiate female gymnasts. Kudlac J; Nichols DL; Sanborn CF; DiMarco NM Calcif Tissue Int; 2004 Dec; 75(6):482-7. PubMed ID: 15365660 [TBL] [Abstract][Full Text] [Related]
14. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. Deere K; Sayers A; Rittweger J; Tobias JH J Bone Miner Res; 2012 Sep; 27(9):1887-95. PubMed ID: 22492557 [TBL] [Abstract][Full Text] [Related]
15. Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. McKay HA; Petit MA; Bailey DA; Wallace WM; Schutz RW; Khan KM J Bone Miner Res; 2000 Jun; 15(6):1181-8. PubMed ID: 10841187 [TBL] [Abstract][Full Text] [Related]
16. The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Gába A; Kapuš O; Pelclová J; Riegerová J Arch Gerontol Geriatr; 2012; 54(3):e315-21. PubMed ID: 22405095 [TBL] [Abstract][Full Text] [Related]
17. Bone density determinants in elderly women: a twin study. Flicker L; Hopper JL; Rodgers L; Kaymakci B; Green RM; Wark JD J Bone Miner Res; 1995 Nov; 10(11):1607-13. PubMed ID: 8592936 [TBL] [Abstract][Full Text] [Related]
18. Determinants of body composition measured by dual-energy X-ray absorptiometry in Dutch children and adolescents. Boot AM; Bouquet J; de Ridder MA; Krenning EP; de Muinck Keizer-Schrama SM Am J Clin Nutr; 1997 Aug; 66(2):232-8. PubMed ID: 9250099 [TBL] [Abstract][Full Text] [Related]
19. Maturity and activity-related differences in bone mineral density: Tanner I vs. II and gymnasts vs. non-gymnasts. Dowthwaite JN; DiStefano JG; Ploutz-Snyder RJ; Kanaley JA; Scerpella TA Bone; 2006 Oct; 39(4):895-900. PubMed ID: 16757218 [TBL] [Abstract][Full Text] [Related]
20. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. MacKelvie KJ; Petit MA; Khan KM; Beck TJ; McKay HA Bone; 2004 Apr; 34(4):755-64. PubMed ID: 15050908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]