BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 20737863)

  • 1. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina.
    Weinberg CB; Sanes JR; Hall ZW
    Dev Biol; 1981 Jun; 84(2):255-66. PubMed ID: 20737863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of acetylcholine receptors is a necessary condition for normal accumulation of acetylcholinesterase during in vitro neuromuscular synaptogenesis.
    De La Porte S; Chaubourt E; Fabre F; Poulas K; Chapron J; Eymard B; Tzartos S; Koenig J
    Eur J Neurosci; 1998 May; 10(5):1631-43. PubMed ID: 9751136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic stabilization of acetylcholine receptors at newly formed neuromuscular junctions in rat.
    Reiness CG; Weinberg CB
    Dev Biol; 1981 Jun; 84(2):247-54. PubMed ID: 20737862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.
    Anglister L; McMahan UJ
    J Cell Biol; 1985 Sep; 101(3):735-43. PubMed ID: 3875617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The clustering of acetylcholine receptors and formation of neuromuscular junctions in regenerating mammalian muscle grafts.
    Womble MD
    Am J Anat; 1986 Jun; 176(2):191-205. PubMed ID: 3739947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congruity of acetylcholine receptor, acetylcholinesterase, and Dolichos biflorus lectin binding glycoprotein in postsynaptic-like sarcolemmal specializations in noninnervated regenerating rat muscles.
    Crne-Finderle N; Sketelj J
    J Neurosci Res; 1993 Jan; 34(1):67-78. PubMed ID: 8423637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle.
    McMahan UJ; Slater CR
    J Cell Biol; 1984 Apr; 98(4):1453-73. PubMed ID: 6609164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase.
    Kallmünzer B; Sörensen B; Neuhuber WL; Wörl J
    Cell Tissue Res; 2006 May; 324(2):181-8. PubMed ID: 16437206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction.
    Anderson MJ; Klier FG; Tanguay KE
    J Cell Biol; 1984 Nov; 99(5):1769-84. PubMed ID: 6386827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographical segregation of old and new acetylcholine receptors at developing ectopic endplates in adult rat muscle.
    Weinberg CB; Reiness CG; Hall ZW
    J Cell Biol; 1981 Jan; 88(1):215-8. PubMed ID: 7204488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of rat soleus endplate membrane following denervation at birth.
    Moss BL; Schuetze SM
    J Neurobiol; 1987 Jan; 18(1):101-18. PubMed ID: 3572385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density and distribution of alpha-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle.
    Bader D
    J Cell Biol; 1981 Feb; 88(2):338-45. PubMed ID: 7204497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of number and distribution of synapses during ectopic synapse formation in adult rat soleus muscles.
    Lømo T; Pockett S; Sommerschild H
    Neuroscience; 1988 Feb; 24(2):673-86. PubMed ID: 3362356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine receptor distribution on regenerating mammalian muscle fibers at sites of mature and developing nerve-muscle junctions.
    Slater CR; Allen EG
    J Physiol (Paris); 1985; 80(4):238-46. PubMed ID: 3834077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity.
    Rotzler S; Brenner HR
    J Cell Biol; 1990 Aug; 111(2):655-61. PubMed ID: 2380246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of junctional acetylcholinesterase by neural and muscular influences in the rat.
    Lømo T; Slater CR
    J Physiol; 1980 Jun; 303():191-202. PubMed ID: 6253619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholinesterase from the motor nerve terminal accumulates on the synaptic basal lamina of the myofiber.
    Anglister L
    J Cell Biol; 1991 Nov; 115(3):755-64. PubMed ID: 1918162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-agrin staining is absent at abandoned synaptic sites of frog neuromuscular junctions.
    Werle MJ; Sojka AM
    J Neurobiol; 1996 Jun; 30(2):293-302. PubMed ID: 8738757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of acetylcholine receptors and acetylcholinesterase at newly formed nerve-muscle synapses.
    Fischbach GD; Frank E; Jessell TM; Rubin LL; Schuetze SM
    Pharmacol Rev; 1978 Dec; 30(4):411-28. PubMed ID: 392537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic or postsynaptic origin of acetylcholinesterase at neuromuscular junctions? An immunological study in heterologous nerve-muscle cultures.
    De La Porte S; Vallette FM; Grassi J; Vigny M; Koenig J
    Dev Biol; 1986 Jul; 116(1):69-77. PubMed ID: 3525279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.