These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20738087)

  • 1. Mechanism of selective halogenation by SyrB2: a computational study.
    Borowski T; Noack H; Radoń M; Zych K; Siegbahn PE
    J Am Chem Soc; 2010 Sep; 132(37):12887-98. PubMed ID: 20738087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2.
    Srnec M; Solomon EI
    J Am Chem Soc; 2017 Feb; 139(6):2396-2407. PubMed ID: 28095695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the catalytic mechanism of (S)-2-hydroxypropylphosphonic acid epoxidase (HppE): a hybrid DFT study.
    Miłaczewska A; Broclawik E; Borowski T
    Chemistry; 2013 Jan; 19(2):771-81. PubMed ID: 23150463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity.
    Srnec M; Wong SD; Matthews ML; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2016 Apr; 138(15):5110-22. PubMed ID: 27021969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese porphyrins catalyze selective C-H bond halogenations.
    Liu W; Groves JT
    J Am Chem Soc; 2010 Sep; 132(37):12847-9. PubMed ID: 20806921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase.
    Sun S; Li ZS; Chen SL
    Dalton Trans; 2014 Jan; 43(3):973-81. PubMed ID: 24162174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)-oxo complex: possibility of rearrangement pathways.
    Quesne MG; de Visser SP
    J Biol Inorg Chem; 2012 Aug; 17(6):841-52. PubMed ID: 22580819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why does the enzyme SyrB2 chlorinate, but does not hydroxylate, saturated hydrocarbons? A density functional theory (DFT) study.
    Pandian S; Vincent MA; Hillier IH; Burton NA
    Dalton Trans; 2009 Aug; (31):6201-7. PubMed ID: 20449117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity.
    Kulik HJ; Blasiak LC; Marzari N; Drennan CL
    J Am Chem Soc; 2009 Oct; 131(40):14426-33. PubMed ID: 19807187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2.
    Matthews ML; Neumann CS; Miles LA; Grove TL; Booker SJ; Krebs C; Walsh CT; Bollinger JM
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17723-8. PubMed ID: 19815524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species.
    Belanzoni P; Bernasconi L; Baerends EJ
    J Phys Chem A; 2009 Oct; 113(43):11926-37. PubMed ID: 19848430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends.
    Berry JF; DeBeer George S; Neese F
    Phys Chem Chem Phys; 2008 Aug; 10(30):4361-74. PubMed ID: 18654674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional theory investigation of Fe-N-O bonding in heme proteins and model systems.
    Zhang Y; Gossman W; Oldfield E
    J Am Chem Soc; 2003 Dec; 125(52):16387-96. PubMed ID: 14692781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III).
    Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L
    Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.
    Song X; Lu J; Lai W
    Phys Chem Chem Phys; 2017 Aug; 19(30):20188-20197. PubMed ID: 28726913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the (superoxo)Fe(III)Fe(III) intermediate and reaction mechanism of myo-inositol oxygenase: DFT and ONIOM(DFT:MM) study.
    Hirao H; Morokuma K
    J Am Chem Soc; 2009 Dec; 131(47):17206-14. PubMed ID: 19929019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.