These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20738087)
21. Mechanism of benzylic hydroxylation by 4-hydroxymandelate synthase. A computational study. Wójcik A; Broclawik E; Siegbahn PE; Borowski T Biochemistry; 2012 Nov; 51(47):9570-80. PubMed ID: 23126679 [TBL] [Abstract][Full Text] [Related]
22. The electronic structure of iron corroles: a combined experimental and quantum chemical study. Ye S; Tuttle T; Bill E; Simkhovich L; Gross Z; Thiel W; Neese F Chemistry; 2008; 14(34):10839-51. PubMed ID: 18956397 [TBL] [Abstract][Full Text] [Related]
23. Selective para-halogenation and dimerization of N,C,N'-arylruthenium(II) and -(III) 2,2':6',2''-terpyridine cations. Wadman SH; Havenith RW; Lutz M; Spek AL; van Klink GP; van Koten G J Am Chem Soc; 2010 Feb; 132(6):1914-24. PubMed ID: 20088557 [TBL] [Abstract][Full Text] [Related]
24. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related]
25. Carbon dioxide: a waste product in the catalytic cycle of alpha-ketoglutarate dependent halogenases prevents the formation of hydroxylated by-products. de Visser SP; Latifi R J Phys Chem B; 2009 Jan; 113(1):12-4. PubMed ID: 19061416 [TBL] [Abstract][Full Text] [Related]
26. Density functional study of a micro-1,1-carboxylate bridged Fe(III)-O-Fe(IV) model complex. 2. Comparison with ribonucleotide reductase intermediate X. Han WG; Lovell T; Liu T; Noodleman L Inorg Chem; 2004 Jan; 43(2):613-21. PubMed ID: 14731023 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Blasiak LC; Vaillancourt FH; Walsh CT; Drennan CL Nature; 2006 Mar; 440(7082):368-71. PubMed ID: 16541079 [TBL] [Abstract][Full Text] [Related]
28. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? de Visser SP J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538 [TBL] [Abstract][Full Text] [Related]
29. Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. Schöneboom JC; Neese F; Thiel W J Am Chem Soc; 2005 Apr; 127(16):5840-53. PubMed ID: 15839682 [TBL] [Abstract][Full Text] [Related]
30. Noninnocence of the ligand glyoxal-bis(2-mercaptoanil). The electronic structures of [Fe(gma)]2, [Fe(gma)(py)] x py, [Fe(gma)(CN)]1-/0, [Fe(gma)I], and [Fe(gma)(PR3)(n)] (n = 1, 2). Experimental and theoretical evidence for "excited state" coordination. Ghosh P; Bill E; Weyhermüller T; Neese F; Wieghardt K J Am Chem Soc; 2003 Feb; 125(5):1293-308. PubMed ID: 12553831 [TBL] [Abstract][Full Text] [Related]
31. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes. Jensen KP; Bell CB; Clay MD; Solomon EI J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382 [TBL] [Abstract][Full Text] [Related]
32. DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase. Han WG; Liu T; Lovell T; Noodleman L J Comput Chem; 2006 Sep; 27(12):1292-306. PubMed ID: 16786546 [TBL] [Abstract][Full Text] [Related]
33. Substrate-triggered formation and remarkable stability of the C-H bond-cleaving chloroferryl intermediate in the aliphatic halogenase, SyrB2. Matthews ML; Krest CM; Barr EW; Vaillancourt FH; Walsh CT; Green MT; Krebs C; Bollinger JM Biochemistry; 2009 May; 48(20):4331-43. PubMed ID: 19245217 [TBL] [Abstract][Full Text] [Related]
34. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Wong SD; Srnec M; Matthews ML; Liu LV; Kwak Y; Park K; Bell CB; Alp EE; Zhao J; Yoda Y; Kitao S; Seto M; Krebs C; Bollinger JM; Solomon EI Nature; 2013 Jul; 499(7458):320-3. PubMed ID: 23868262 [TBL] [Abstract][Full Text] [Related]
35. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
36. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
37. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
38. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101 [TBL] [Abstract][Full Text] [Related]
39. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. Chen H; Ikeda-Saito M; Shaik S J Am Chem Soc; 2008 Nov; 130(44):14778-90. PubMed ID: 18847206 [TBL] [Abstract][Full Text] [Related]
40. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism. Borowski T; Bassan A; Siegbahn PE Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]