BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 20738097)

  • 1. Strong micro-dielectric environment effect on the band gaps of (n,m)single-walled carbon nanotubes.
    Hirana Y; Tanaka Y; Niidome Y; Nakashima N
    J Am Chem Soc; 2010 Sep; 132(37):13072-7. PubMed ID: 20738097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments.
    Silvera-Batista CA; Wang RK; Weinberg P; Ziegler KJ
    Phys Chem Chem Phys; 2010 Jul; 12(26):6990-8. PubMed ID: 20463994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules.
    Zhou J; Maeda Y; Lu J; Tashiro A; Hasegawa T; Luo G; Wang L; Lai L; Akasaka T; Nagase S; Gao Z; Qin R; Mei WN; Li G; Yu D
    Small; 2009 Feb; 5(2):244-55. PubMed ID: 19058283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singling out the electrochemistry of individual single-walled carbon nanotubes in solution.
    Paolucci D; Franco MM; Iurlo M; Marcaccio M; Prato M; Zerbetto F; Pénicaud A; Paolucci F
    J Am Chem Soc; 2008 Jun; 130(23):7393-9. PubMed ID: 18479091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes.
    Park JS; Hirana Y; Mouri S; Miyauchi Y; Nakashima N; Matsuda K
    J Am Chem Soc; 2012 Sep; 134(35):14461-6. PubMed ID: 22870955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode.
    Yang LJ; Tang C; Xiong HY; Zhang XH; Wang SF
    Bioelectrochemistry; 2009 Jun; 75(2):158-62. PubMed ID: 19383571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity.
    Lu Y; Yang X; Ma Y; Huang Y; Chen Y
    Biotechnol Lett; 2008 Jun; 30(6):1031-5. PubMed ID: 18224281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of n-type carbon nanotubes prepared by CF4 plasma fluorination and amino functionalization.
    Plank NO; Forrest GA; Cheung R; Alexander AJ
    J Phys Chem B; 2005 Dec; 109(47):22096-101. PubMed ID: 16853875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents.
    Brandão SD; Andrada D; Mesquita AF; Santos AP; Gorgulho HF; Paniago R; Pimenta MA; Fantini C; Furtado CA
    J Phys Condens Matter; 2010 Aug; 22(33):334222. PubMed ID: 21386512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G; Gómez-Martínez R; Villa R
    Physiol Meas; 2008 Jun; 29(6):S203-12. PubMed ID: 18544808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element.
    Yan J; Zhou Y; Yu P; Su L; Mao L; Zhang D; Zhu D
    Chem Commun (Camb); 2008 Sep; (36):4330-2. PubMed ID: 18802560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azafullerene encapsulated single-walled carbon nanotubes with n-type electrical transport property.
    Kaneko T; Li Y; Nishigaki S; Hatakeyama R
    J Am Chem Soc; 2008 Mar; 130(9):2714-5. PubMed ID: 18257566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble ultra-short single-walled carbon nanotubes.
    Chen Z; Kobashi K; Rauwald U; Booker R; Fan H; Hwang WF; Tour JM
    J Am Chem Soc; 2006 Aug; 128(32):10568-71. PubMed ID: 16895425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications.
    Li Y; Wang P; Wang L; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of cetyltrimethyl ammonium bromide on electrochemical properties of thyroxine reduction at carbon nanotubes modified electrode.
    Wang F; Fei J; Hu S
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):95-101. PubMed ID: 15542346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.
    Takenobu T; Takano T; Shiraishi M; Murakami Y; Ata M; Kataura H; Achiba Y; Iwasa Y
    Nat Mater; 2003 Oct; 2(10):683-8. PubMed ID: 12958593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.