These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20738113)

  • 1. Achieving the theoretical depairing current limit in superconducting nanomesh films.
    Xu K; Cao P; Heath JR
    Nano Lett; 2010 Oct; 10(10):4206-10. PubMed ID: 20738113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depairing Current at High Magnetic Fields in Vortex-Free High-Temperature Superconducting Nanowires.
    Rouco V; Navau C; Del-Valle N; Massarotti D; Papari GP; Stornaiuolo D; Obradors X; Puig T; Tafuri F; Sanchez A; Palau A
    Nano Lett; 2019 Jun; ():. PubMed ID: 31185574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadrupling the depairing current density in the iron-based superconductor SmFeAsO
    Miura M; Eley S; Iida K; Hanzawa K; Matsumoto J; Hiramatsu H; Ogimoto Y; Suzuki T; Kobayashi T; Ozaki T; Kurokawa H; Sekiya N; Yoshida R; Kato T; Okada T; Okazaki H; Yamaki T; Hänisch J; Awaji S; Maeda A; Maiorov B; Hosono H
    Nat Mater; 2024 Oct; 23(10):1370-1378. PubMed ID: 39026087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of finite size effects in quasi-zero dimensional superconductors.
    Bose S; Ayyub P
    Rep Prog Phys; 2014 Nov; 77(11):116503. PubMed ID: 25373494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators.
    Senevirathne IH; Gurevich A; Delayen JR
    Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric quenching of orbital pair breaking in a single crystalline superconducting nanomesh network.
    Nam H; Chen H; Adams PW; Guan SY; Chuang TM; Chang CS; MacDonald AH; Shih CK
    Nat Commun; 2018 Dec; 9(1):5431. PubMed ID: 30575727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and superconductivity of FeSe-related superconductors.
    Liu X; Zhao L; He S; He J; Liu D; Mou D; Shen B; Hu Y; Huang J; Zhou XJ
    J Phys Condens Matter; 2015 May; 27(18):183201. PubMed ID: 25879999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal self-field critical current for thin-film superconductors.
    Talantsev EF; Tallon JL
    Nat Commun; 2015 Aug; 6():7820. PubMed ID: 26240014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reentrant Phase Coherence in Superconducting Nanowire Composites.
    Ansermet D; Petrović AP; He S; Chernyshov D; Hoesch M; Salloum D; Gougeon P; Potel M; Boeri L; Andersen OK; Panagopoulos C
    ACS Nano; 2016 Jan; 10(1):515-23. PubMed ID: 26727335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting Tunneling Spectroscopy of Spin-Orbit Coupling and Orbital Depairing in Nb:SrTiO_{3}.
    Swartz AG; Cheung AKC; Yoon H; Chen Z; Hikita Y; Raghu S; Hwang HY
    Phys Rev Lett; 2018 Oct; 121(16):167003. PubMed ID: 30387624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic Superconducting Diode Effect.
    Daido A; Ikeda Y; Yanase Y
    Phys Rev Lett; 2022 Jan; 128(3):037001. PubMed ID: 35119893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge-Si Nanowires.
    Ridderbos J; Brauns M; de Vries FK; Shen J; Li A; Kölling S; Verheijen MA; Brinkman A; van der Wiel WG; Bakkers EPAM; Zwanenburg FA
    Nano Lett; 2020 Jan; 20(1):122-130. PubMed ID: 31771328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust nitridation technique for fabrication of disordered superconducting TiN thin films featuring phase slip events.
    Yadav S; Kaushik V; Saravanan MP; Aloysius RP; Ganesan V; Sahoo S
    Sci Rep; 2021 Apr; 11(1):7888. PubMed ID: 33846407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.
    Robbins SW; Beaucage PA; Sai H; Tan KW; Werner JG; Sethna JP; DiSalvo FJ; Gruner SM; Van Dover RB; Wiesner U
    Sci Adv; 2016 Jan; 2(1):e1501119. PubMed ID: 27152327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Excited States in Superconductors due to a Microwave Field.
    Semenov AV; Devyatov IA; de Visser PJ; Klapwijk TM
    Phys Rev Lett; 2016 Jul; 117(4):047002. PubMed ID: 27494495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.
    Tan T; Wolak MA; Xi XX; Tajima T; Civale L
    Sci Rep; 2016 Oct; 6():35879. PubMed ID: 27775087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave response of superconducting YBa2Cu3O(7-δ) nanowire bridges sustaining the critical depairing current: evidence of Josephson-like behavior.
    Nawaz S; Arpaia R; Lombardi F; Bauch T
    Phys Rev Lett; 2013 Apr; 110(16):167004. PubMed ID: 23679634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk Superconductivity and Role of Fluctuations in the Iron-Based Superconductor FeSe at High Pressures.
    Gati E; Böhmer AE; Bud'ko SL; Canfield PC
    Phys Rev Lett; 2019 Oct; 123(16):167002. PubMed ID: 31702365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial vortex pinning arrays in superconducting films deposited on highly ordered anodic alumina templates.
    Piraux L; Hallet X
    Nanotechnology; 2012 Sep; 23(35):355301. PubMed ID: 22875720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.