These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20738114)

  • 1. Spectroscopy of covalently functionalized graphene.
    Niyogi S; Bekyarova E; Itkis ME; Zhang H; Shepperd K; Hicks J; Sprinkle M; Berger C; Lau CN; deHeer WA; Conrad EH; Haddon RC
    Nano Lett; 2010 Oct; 10(10):4061-6. PubMed ID: 20738114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent functionalization of graphene with reactive intermediates.
    Park J; Yan M
    Acc Chem Res; 2013 Jan; 46(1):181-9. PubMed ID: 23116448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity.
    Malig J; Jux N; Guldi DM
    Acc Chem Res; 2013 Jan; 46(1):53-64. PubMed ID: 22916796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical chlorination of graphene.
    Li B; Zhou L; Wu D; Peng H; Yan K; Zhou Y; Liu Z
    ACS Nano; 2011 Jul; 5(7):5957-61. PubMed ID: 21657242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic covalent functionalization of graphene.
    Johns JE; Hersam MC
    Acc Chem Res; 2013 Jan; 46(1):77-86. PubMed ID: 23030800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene.
    Daukiya L; Mattioli C; Aubel D; Hajjar-Garreau S; Vonau F; Denys E; Reiter G; Fransson J; Perrin E; Bocquet ML; Bena C; Gourdon A; Simon L
    ACS Nano; 2017 Jan; 11(1):627-634. PubMed ID: 28027437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials.
    Rebelo SL; Guedes A; Szefczyk ME; Pereira AM; Araújo JP; Freire C
    Phys Chem Chem Phys; 2016 May; 18(18):12784-96. PubMed ID: 27104221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
    Stubrov Y; Nikolenko A; Gubanov V; Strelchuk V
    Nanoscale Res Lett; 2016 Dec; 11(1):2. PubMed ID: 26729220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of carbon nanotubes with -CH(n), -NH(n) fragments, -COOH and -OH groups.
    Milowska KZ; Majewski JA
    J Chem Phys; 2013 May; 138(19):194704. PubMed ID: 23697427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene covalently binding aryl groups: conductivity increases rather than decreases.
    Huang P; Zhu H; Jing L; Zhao Y; Gao X
    ACS Nano; 2011 Oct; 5(10):7945-9. PubMed ID: 21923180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization.
    Guday G; Donskyi IS; Gholami MF; Algara-Siller G; Witte F; Lippitz A; Unger WES; Paulus B; Rabe JP; Adeli M; Haag R
    Small; 2019 Mar; 15(12):e1805430. PubMed ID: 30773846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetracyanoethylene oxide- functionalized graphene and graphite characterized by Raman and Auger spectroscopy.
    Frolova LV; Magedov IV; Harper A; Jha SK; Ovezmyradov M; Chandler G; Garcia J; Bethke D; Shaner EA; Vasiliev I; Kalugin NG
    Carbon N Y; 2015 Jan; 81():216-222. PubMed ID: 25484371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.
    Lazar P; Chua CK; Holá K; Zbořil R; Otyepka M; Pumera M
    Small; 2015 Aug; 11(31):3790-6. PubMed ID: 25939616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy of boron-doped single-layer graphene.
    Kim YA; Fujisawa K; Muramatsu H; Hayashi T; Endo M; Fujimori T; Kaneko K; Terrones M; Behrends J; Eckmann A; Casiraghi C; Novoselov KS; Saito R; Dresselhaus MS
    ACS Nano; 2012 Jul; 6(7):6293-300. PubMed ID: 22695033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.
    Huang P; Jing L; Zhu H; Gao X
    Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Effective Functionalization of Graphene Oxide by Boron-Oxygen Covalent or Bingel Cyclopropanation Reaction.
    Yan W; Xu Y; Chen Y
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2020-6. PubMed ID: 26413615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization.
    Wang QH; Shih CJ; Paulus GL; Strano MS
    J Am Chem Soc; 2013 Dec; 135(50):18866-75. PubMed ID: 24266808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.