BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20738117)

  • 41. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin.
    Shorie M; Kumar V; Kaur H; Singh K; Tomer VK; Sabherwal P
    Mikrochim Acta; 2018 Feb; 185(3):158. PubMed ID: 29594650
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor.
    Tian YF; Ning CF; He F; Yin BC; Ye BC
    Analyst; 2018 Oct; 143(20):4915-4922. PubMed ID: 30225507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One-step fabrication of dopamine-inspired Au for SERS sensing of Cd
    Du J; Jing C
    Anal Chim Acta; 2019 Jul; 1062():131-139. PubMed ID: 30947989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.
    Radziuk D; Moehwald H
    Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly.
    Qian K; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6449-54. PubMed ID: 22955203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold Nanocylinders on Gold Film as a Multi-spectral SERS Substrate.
    Safar W; Lequeux M; Solard J; Fischer APA; Felidj N; Gucciardi PG; Edely M; de la Chapelle ML
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32403295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Based on time and spatial-resolved SERS mapping strategies for detection of pesticides.
    Ma B; Li P; Yang L; Liu J
    Talanta; 2015 Aug; 141():1-7. PubMed ID: 25966372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite.
    Chen M; Zhang L; Gao M; Zhang X
    Talanta; 2017 Sep; 172():176-181. PubMed ID: 28602292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Limitations on the optical tunability of small diameter gold nanoshells.
    Rasch MR; Sokolov KV; Korgel BA
    Langmuir; 2009 Oct; 25(19):11777-85. PubMed ID: 19711913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients.
    Zhao X; Campbell S; Wallace GQ; Claing A; Bazuin CG; Masson JF
    ACS Sens; 2020 Jul; 5(7):2155-2167. PubMed ID: 32515184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses.
    Wei K; Shen Z; Malini O
    Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amphiphilic Functionalized Acupuncture Needle as SERS Sensor for In Situ Multiphase Detection.
    Zhou B; Mao M; Cao X; Ge M; Tang X; Li S; Lin D; Yang L; Liu J
    Anal Chem; 2018 Mar; 90(6):3826-3832. PubMed ID: 29457458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering.
    Li C; Liu A; Zhang C; Wang M; Li Z; Xu S; Jiang S; Yu J; Yang C; Man B
    Opt Express; 2017 Aug; 25(17):20631-20641. PubMed ID: 29041742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.