These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20738150)
1. Design of a Pep-1 peptide-modified liposomal nanocarrier system for intracellular drug delivery: Conformational characterization and cellular uptake evaluation. Kang MJ; Kim BG; Eum JY; Park SH; Choi SE; An JJ; Jang SH; Eum WS; Lee J; Lee MW; Kang K; Oh CH; Choi SY; Choi YW J Drug Target; 2011 Aug; 19(7):497-505. PubMed ID: 20738150 [TBL] [Abstract][Full Text] [Related]
2. Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Kang MJ; Park SH; Kang MH; Park MJ; Choi YW Int J Nanomedicine; 2013; 8():1155-65. PubMed ID: 23515421 [TBL] [Abstract][Full Text] [Related]
3. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Kang MJ; Eum JY; Park SH; Kang MH; Park KH; Choi SE; Lee MW; Kang KH; Oh CH; Choi YW Int J Pharm; 2010 Dec; 402(1-2):198-204. PubMed ID: 20888893 [TBL] [Abstract][Full Text] [Related]
4. Design of Multifunctional Liposomal Nanocarriers for Folate Receptor-Specific Intracellular Drug Delivery. Kang MH; Yoo HJ; Kwon YH; Yoon HY; Lee SG; Kim SR; Yeom DW; Kang MJ; Choi YW Mol Pharm; 2015 Dec; 12(12):4200-13. PubMed ID: 26544061 [TBL] [Abstract][Full Text] [Related]
5. Pep-1 Peptide-modified liposomal carriers for intracellular delivery of gold nanoparticles. Kang MJ; Lee S; Kim BK; Eum JY; Park SH; Kang MH; Oh CH; Choo J; Choi YW Chem Pharm Bull (Tokyo); 2011; 59(1):109-12. PubMed ID: 21212557 [TBL] [Abstract][Full Text] [Related]
6. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Zhu WL; Lan H; Park IS; Kim JI; Jin HZ; Hahm KS; Shin SY Biochem Biophys Res Commun; 2006 Oct; 349(2):769-74. PubMed ID: 16945333 [TBL] [Abstract][Full Text] [Related]
7. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related]
8. RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Kang MH; Park MJ; Yoo HJ; hyuk KY; Lee SG; Kim SR; Yeom DW; Kang MJ; Choi YW Eur J Pharm Biopharm; 2014 Aug; 87(3):489-99. PubMed ID: 24704199 [TBL] [Abstract][Full Text] [Related]
9. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. Bhatia A; Kumar R; Katare OP J Pharm Pharm Sci; 2004 Jul; 7(2):252-9. PubMed ID: 15367383 [TBL] [Abstract][Full Text] [Related]
10. Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. Hossen MN; Kajimoto K; Akita H; Hyodo M; Ishitsuka T; Harashima H J Control Release; 2010 Oct; 147(2):261-8. PubMed ID: 20647023 [TBL] [Abstract][Full Text] [Related]
11. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Sharonov A; Hochstrasser RM Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046 [TBL] [Abstract][Full Text] [Related]
12. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Muñoz-Morris MA; Heitz F; Divita G; Morris MC Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical and biological characterization of pep-1/elastin complexes. Ahmad Nasrollahi S; Taghibiglou C; Fouladdel S; Dinarvand R; Moosavi Movahedi AA; Azizi E; Farboud ES Chem Biol Drug Des; 2013 Aug; 82(2):189-95. PubMed ID: 23601371 [TBL] [Abstract][Full Text] [Related]
14. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
15. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. Henriques ST; Costa J; Castanho MA FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883 [TBL] [Abstract][Full Text] [Related]
16. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Zhu WL; Hahm KS; Shin SY J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552 [TBL] [Abstract][Full Text] [Related]
17. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]