These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 20738407)
1. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Matallana E FEMS Yeast Res; 2010 Nov; 10(7):870-84. PubMed ID: 20738407 [TBL] [Abstract][Full Text] [Related]
2. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Pérez-Torrado R; Bruno-Bárcena JM; Matallana E Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716 [TBL] [Abstract][Full Text] [Related]
3. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Gómez-Pastor R; Pérez-Torrado R; Matallana E Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102 [TBL] [Abstract][Full Text] [Related]
4. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715 [TBL] [Abstract][Full Text] [Related]
5. Proteomic evolution of a wine yeast during the first hours of fermentation. Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542 [TBL] [Abstract][Full Text] [Related]
7. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Jiménez-Martí E; Zuzuarregui A; Ridaura I; Lozano N; del Olmo M Int J Food Microbiol; 2009 Mar; 130(2):122-30. PubMed ID: 19217680 [TBL] [Abstract][Full Text] [Related]
8. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation. Novo M; Beltran G; Rozes N; Guillamon JM; Sokol S; Leberre V; François J; Mas A FEMS Yeast Res; 2007 Mar; 7(2):304-16. PubMed ID: 17132143 [TBL] [Abstract][Full Text] [Related]
9. Coupling kinetic expressions and metabolic networks for predicting wine fermentations. Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Rossignol T; Postaire O; Storaï J; Blondin B Appl Microbiol Biotechnol; 2006 Aug; 71(5):699-712. PubMed ID: 16607525 [TBL] [Abstract][Full Text] [Related]
12. The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. Rossignol T; Kobi D; Jacquet-Gutfreund L; Blondin B J Appl Microbiol; 2009 Jul; 107(1):47-55. PubMed ID: 19245406 [TBL] [Abstract][Full Text] [Related]
13. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme. Walkey CJ; Luo Z; Borchers CH; Measday V; van Vuuren HJ FEMS Yeast Res; 2011 Sep; 11(6):499-508. PubMed ID: 21585652 [TBL] [Abstract][Full Text] [Related]
14. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Riou C; Nicaud JM; Barre P; Gaillardin C Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106 [TBL] [Abstract][Full Text] [Related]
15. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Cheng JS; Zhou X; Ding MZ; Yuan YJ Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the stress resistance of commercial wine yeast strains. Carrasco P; Querol A; del Olmo M Arch Microbiol; 2001 Jun; 175(6):450-7. PubMed ID: 11491086 [TBL] [Abstract][Full Text] [Related]
17. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis. Bruck J; Liebermeister W; Klipp E Genome Inform; 2008; 20():1-14. PubMed ID: 19425118 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification. Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184 [TBL] [Abstract][Full Text] [Related]
19. Expression of stress response genes in wine strains with different fermentative behavior. Zuzuarregui A; del Olmo ML FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773 [TBL] [Abstract][Full Text] [Related]
20. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation. Chiva R; Baiges I; Mas A; Guillamon JM J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]