These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20738819)

  • 41. Quantifying transmission of Campylobacter spp. among broilers.
    Van Gerwe TJ; Bouma A; Jacobs-Reitsma WF; van den Broek J; Klinkenberg D; Stegeman JA; Heesterbeek JA
    Appl Environ Microbiol; 2005 Oct; 71(10):5765-70. PubMed ID: 16204486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prevalence of Arcobacter and Campylobacter on broiler carcasses during processing.
    Son I; Englen MD; Berrang ME; Fedorka-Cray PJ; Harrison MA
    Int J Food Microbiol; 2007 Jan; 113(1):16-22. PubMed ID: 16979251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards.
    Rajan K; Shi Z; Ricke SC
    Crit Rev Microbiol; 2017 May; 43(3):370-392. PubMed ID: 27869522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward improving food safety in the domestic environment: a multi-item Rasch scale for the measurement of the safety efficacy of domestic food-handling practices.
    Fischer AR; Frewer LJ; Nauta MJ
    Risk Anal; 2006 Oct; 26(5):1323-38. PubMed ID: 17054534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study on the prevalence of Campylobacter spp. from chicken meat in Hanoi, Vietnam.
    Luu QH; Tran TH; Phung DC; Nguyen TB
    Ann N Y Acad Sci; 2006 Oct; 1081():273-5. PubMed ID: 17135525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of acquired immunity and dose-dependent probability of illness on quantitative microbial risk assessment.
    Havelaar AH; Swart AN
    Risk Anal; 2014 Oct; 34(10):1807-19. PubMed ID: 24835622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining QMRA and Epidemiology to Estimate Campylobacteriosis Incidence.
    Evers EG; Bouwknegt M
    Risk Anal; 2016 Oct; 36(10):1959-1968. PubMed ID: 26889674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Generalized QMRA Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2016 Oct; 36(10):1948-1958. PubMed ID: 26849688
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Review of Quantitative Microbial Risk Assessment in Poultry Meat: The Central Position of Consumer Behavior.
    Khalid T; Hdaifeh A; Federighi M; Cummins E; Boué G; Guillou S; Tesson V
    Foods; 2020 Nov; 9(11):. PubMed ID: 33202859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fitting a distribution to microbial counts: making sense of zeroes.
    Duarte AS; Stockmarr A; Nauta MJ
    Int J Food Microbiol; 2015 Mar; 196():40-50. PubMed ID: 25522056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. QMRA for Drinking Water: 1. Revisiting the Mathematical Structure of Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):145-62. PubMed ID: 26812257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):163-81. PubMed ID: 26812258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2017 Jul; 37(7):1388-1402. PubMed ID: 27704592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Campylobacter QMRA: A Bayesian Estimation of Prevalence and Concentration in Retail Foods Under Clustering and Heavy Censoring.
    Mikkelä A; Ranta J; González M; Hakkinen M; Tuominen P
    Risk Anal; 2016 Nov; 36(11):2065-2080. PubMed ID: 26858000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling of inactivation through heating for quantitative microbiological risk assessment (QMRA).
    ; Pesciaroli M; Chardon JE; Evers EG
    EFSA J; 2018 Aug; 16(Suppl 1):e16089. PubMed ID: 32626060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uncertainty of population risk estimates for pathogens based on QMRA or epidemiology: a case study of Campylobacter in the Netherlands.
    Bouwknegt M; Knol AB; van der Sluijs JP; Evers EG
    Risk Anal; 2014 May; 34(5):847-64. PubMed ID: 24341679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advice to risk assessors modeling viral health risk associated with household graywater.
    O'Toole J; Sinclair M; Fiona Barker S; Leder K
    Risk Anal; 2014 May; 34(5):797-802. PubMed ID: 24200299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling and magnitude estimation of cross-contamination in the kitchen for quantitative microbiological risk assessment (QMRA).
    ; Iulietto MF; Evers EG
    EFSA J; 2020 Nov; 18(Suppl 1):e181106. PubMed ID: 33294045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.
    Wessler BS; Lai Yh L; Kramer W; Cangelosi M; Raman G; Lutz JS; Kent DM
    Circ Cardiovasc Qual Outcomes; 2015 Jul; 8(4):368-75. PubMed ID: 26152680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges.
    Prein AF; Langhans W; Fosser G; Ferrone A; Ban N; Goergen K; Keller M; Tölle M; Gutjahr O; Feser F; Brisson E; Kollet S; Schmidli J; van Lipzig NP; Leung R
    Rev Geophys; 2015 Jun; 53(2):323-361. PubMed ID: 27478878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.