These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20738889)

  • 41. Single vs. two-photon microscopy for label free intrinsic tissue studies in the UV light region.
    Zubkovs V; Jamme F; Kascakova S; Chiappini F; Le Naour F; Réfrégiers M
    Analyst; 2014 Jun; 139(11):2663-7. PubMed ID: 24752785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.
    Bhartia R; Salas EC; Hug WF; Reid RD; Lane AL; Edwards KJ; Nealson KH
    Appl Environ Microbiol; 2010 Nov; 76(21):7231-7. PubMed ID: 20817797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupling transmission electron microscopy with synchrotron radiation X-ray fluorescence microscopy to image vascular copper.
    Qin Z; Lai B; Landero J; Caruso JA
    J Synchrotron Radiat; 2012 Nov; 19(Pt 6):1043-9. PubMed ID: 23093768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Terbium ion as RNA tag for slide-free pathology with deep-ultraviolet excitation fluorescence.
    Kumamoto Y; Matsumoto T; Tanaka H; Takamatsu T
    Sci Rep; 2019 Jul; 9(1):10745. PubMed ID: 31341229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.
    Kim J; Song H; Park I; Carlisle CR; Bonin K; Guthold M
    Microsc Res Tech; 2011 Mar; 74(3):219-24. PubMed ID: 20597072
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep ultraviolet tip-enhanced fluorescence.
    Meng L; Gao M; Sun M
    Nanotechnology; 2019 Jan; 30(3):035202. PubMed ID: 30418945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synchrotron-based X-ray-sensitive nanoprobes for cellular imaging.
    Zhu Y; Earnest T; Huang Q; Cai X; Wang Z; Wu Z; Fan C
    Adv Mater; 2014 Dec; 26(46):7889-95. PubMed ID: 24687860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep ultraviolet fluorescence microscopy of three-dimensional structures in the mouse brain.
    Kasaragod DK; Aizawa H
    Sci Rep; 2023 May; 13(1):8553. PubMed ID: 37237102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source.
    Owen DM; Auksorius E; Manning HB; Talbot CB; de Beule PA; Dunsby C; Neil MA; French PM
    Opt Lett; 2007 Dec; 32(23):3408-10. PubMed ID: 18059949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative phase imaging using a deep UV LED source.
    Singh AK; Faridian A; Gao P; Pedrini G; Osten W
    Opt Lett; 2014 Jun; 39(12):3468-71. PubMed ID: 24978513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining Primed Photoconversion and UV-Photoactivation for Aberration-Free, Live-Cell Compliant Multi-Color Single-Molecule Localization Microscopy Imaging.
    Virant D; Turkowyd B; Balinovic A; Endesfelder U
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28708098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.
    Zhao Q; Wang R; Zhang S; Wang T; Song P; Zheng G
    APL Photonics; 2024 Sep; 9(9):090801. PubMed ID: 39301193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.
    Koo BU; Kang Y; Moon S; Lee WG
    Analyst; 2015 Nov; 140(21):7373-81. PubMed ID: 26381726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Autofluorescence of adipose tissue measured with fibre optics.
    Swatland HJ
    Meat Sci; 1987; 19(4):277-84. PubMed ID: 22056049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Breaking the 200 nm limit for routine flow linear dichroism measurements using UV synchrotron radiation.
    Dicko C; Hicks MR; Dafforn TR; Vollrath F; Rodger A; Hoffmann SV
    Biophys J; 2008 Dec; 95(12):5974-7. PubMed ID: 18805928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging X-ray fluorescence microscope with a Wolter-type grazing-incidence mirror.
    Aoki S; Takeuchi A; Ando M
    J Synchrotron Radiat; 1998 May; 5(Pt 3):1117-8. PubMed ID: 15263764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D imaging of enzymes working in situ.
    Jamme F; Bourquin D; Tawil G; Viksø-Nielsen A; Buléon A; Réfrégiers M
    Anal Chem; 2014 Jun; 86(11):5265-70. PubMed ID: 24796213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology.
    Habibalahi A; Moghari MD; Campbell JM; Anwer AG; Mahbub SB; Gosnell M; Saad S; Pollock C; Goldys EM
    Redox Biol; 2020 Jul; 34():101561. PubMed ID: 32526699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of powdered Chinese herbal medicines by fluorescence microscopy, Part 1: Fluorescent characteristics of mechanical tissues, conducting tissues, and ergastic substances.
    Wang YQ; Liang ZT; Li Q; Yang H; Chen HB; Zhao ZZ; Li P
    Microsc Res Tech; 2011 Mar; 74(3):269-80. PubMed ID: 20623757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep-UV biological imaging by lanthanide ion molecular protection.
    Kumamoto Y; Fujita K; Smith NI; Kawata S
    Biomed Opt Express; 2016 Jan; 7(1):158-70. PubMed ID: 26819825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.